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Physical Memory Management in a Network Operating System 

Michael Newell Nelson 

Abstract 

This dissertation develops and measures methods of using large main memories to 
provide high performance in a network operating system. The dissertation covers three 
areas: file caching, virtual memory, and the interaction between the two. The work in 

all three areas was done as part of Sprite, a new network operating system that is being 
built here at Berkeley. 

The first part of the dissertation presents results obtained through the development 
of the Sprite file system, which uses large main-memory file caches to achieve high per

formance. Sprite provides non-write-through file caching on both client and server 
machines. A simple cache consistency mechanism permits files to be shared by multi
ple clients without danger of stale data. Benchmark programs indicate that client 
caches allow diskless Sprite workstations to perform within 0-8% of workstations with 

disks. In addition, client caching reduces server loading by 50% and network traffic by 
75%. 

In addition to demonstrating the performance advantages of client caching, this 

dissertation also shows the advantage of writing policies that delay the writing of blocks 
from client caches to server caches and from server caches to disk. A measurement of 9 
different writing policies on the client and 4 on the server shows that delayed-write pol
icies provide the best performance in terms of network bytes transferred, disk utiliza

tion, server utilization and elapsed time. More restrictive policies such as write-through 

can cause benchmarks to execute from 25ro to 100% more slowly than if delayed-write 
policies are used. 

The second part of this dissertation looks at the interaction between the virtual 

memory system and the file system. It describes a mechanism that has been imple

mented as part of Sprite that allows the file system cache to vary in size in response to 

the needs of the virtual memory system and the file system. This is done by having the 

file system of each machine negotiate with the virtual memory system over physical 
memory use. This variable-size cache mechanism provides better performance than a 

fixed-size file system cache of any size over a mix of file-intensive and virtual

memory-intensive programs. 

The last part of this dissertation focuses on copy-on-write mechanisms for efficient 
process creation. It describes a simple copy-on-write mechanism that has been imple
mented as part of Sprite which is a combination of copy-on-write (COW) and copy-on

reference (COR). The COW-COR mechanism can potentially improve fork perfor

mance over copy-on-fork schemes from 10 to 100 times if many page copies are 

avoided. However, in normal use more than 70% of the pages have to be copied any

way. The overhead of handling the page faults required to copy the pages results in 
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worse overall performance than copy-on-fork; with a more optimized implementation 
forks would be about 20% faster with COW-COR than with copy-on-fork. A pure 
COW scheme would eliminate 10 to 20 percent of the page copies required under 
COW-COR and would provide up to a 20% improvement in fork perfom1ance over 
COW-COR. However, because of extra cache-flushing overhead on machines with 
virtually-addressed caches, pure COW may have worse overall performance than 
COW-COR on these types of machines. 
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CHAPTER 1 

Introduction 

The work presented in this dissertation was motivated by two recent changes in 
technology: networks and large memories. The introduction of networks has led to a 
move away from centralized timesharing operating systems towards network operating 
systems. In these network operating systems each user has a personal high
performance workstation and communicates with other users across a network. Data 
that was once stored on a single set of disks in the timesharing systems is now distri
buted amongst the disks of several workstations. In fact, many of the workstations do 
not have any disk at all; the data for these diskless workstations is stored across the net
work on the disks of other workstations. 

The move towards network operating systems poses two problems: how to provide 
users with high performance and how to allow users to easily share data. Performance 
is a problem in network environments because each access of data may require both a 
network access and a disk access. Network accesses will be required if the data that is 
being accessed is stored on another workstation's disk; both diskless workstations and 
workstations that are sharing data may have to perform many network accesses. The 
performance problem can be solved by using the large memories which have recently 
become available. The memories can be used to cache recently accessed file data and 
thereby eliminate many network and disk accesses. 

The problem with using large memories as caches of file data is that it may make 
file sharing difficult. In order for users that are sharing files to get consistent results 
they will need to see a consistent view of the file data; if one user writes new data to a 
file, then subsequent reads of the file should return the most recently written data, not 
some old stale data. In timesharing systems, guaranteeing that each user sees a con
sistent view of files is easy because the data is only stored in one place; all reads and 
writes of file data happen to one central place so each user is guaranteed to see the same 
view of the file. However, in a network operating system that caches data, the data for a 
particular file may potentially be distributed around the network in many workstations' 
memories. 

This thesis describes the design, implementation, and performance of several tech
niques that use large physical memories to provide sharing and high-performance in a 
network operating system. The method that I used to perform this research was to 
design, build and measure the Sprite file system caching mechanism and the Sprite vir
~ual memory system as part of the Sprite operating system [OCD88]. In addition to 
measuring the mechanisms used daily in Sprite, I also measured a variety of alternative 
mechanisms; these measurements provide the first quantitative comparisons between 
many of the popular memory-management techniques. 

One major contribution of this dissertation is an exploration of the tradeoffs in 
designing and implementing a distributed file data caching mechanism. I will show that 
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by effectively utilizing large physical memories as caches of file data, workstations can 

achieve high performance even without using a local disk; this high performance can be 
achieved while providing all workstations with a consistent view of file system data and 
without overloading networks or servert machines. In addition I will demonstrate the 
importance of the writing policy: the policy that determines when dirty data is written 

back to the server or the disk. I will show that writing policies have a major impact on 

performance. 

Another contribution of this dissertation is in the area of the interaction between 
the file system and the virtual memory system. I will present a simple mechanism that 
allows the file system cache to vary in size in response to the needs of the virtual 
memory system and the file system. This variable-size cache mechanism provides 
better performance than a fixed-size file system cache of any size. 

The last contribution of this dissertation is an analysis of the tradeoffs in one par
ticular area of virtual memory management: fast process creation. When a new process 
is created, the process is given a copy of its parent's address space. As users begin to 
take advantage of large memories, the size of processes may increase, which will 

increase the cost of copying an address space. A common method of improving the 
performance of process creation is by using copy-on-write: pages in the address space 
are initially shared by the parent and child; a page is not actually copied until one of the 
processes attempts to modify it. In this dissertation I will describe a simple copy-on
write mechanism that has been implemented as part of Sprite. I will show that in prac
tice this and other copy-on-write mechanisms may actually give worse performance 
than the simpler copy-on-process-creation schemes. 

The rest of this chapter is divided into three sections. The first section credits the 
other Sprite developers who helped me perform part of this research. The next section 
provides an overview of the Sprite operating system, which I used to perform my 
research. Finally, the last section presents an overview of the dissertation. 

1.1. I versus We 

The research presented in this thesis was done through the development and meas
urement of the Sprite operating system. Sprite, which I will describe in the next sec
tion, was not a one-person project; it involved 4 other people. All of the work that I 
will present in this dissertation I did on my own except for the design of parts of the file 
system. The file system was a joint project between myself and Brent Welch, where I 
concentrated on the caching issues and Brent on the naming issues. In order to give 
proper credit to the work of others, when I describe the design of the file system in 
Chapter 3 and when I give the Sprite overview in the next section, I will use "we" 
instead of ''I''. In the rest of the dissertation where I describe work that I did on my 
own I will use "I". 

t Throughout this dissertation the tenn server will be used when referring to workstations 
that have local disks and the term client will refer to workstations that wish to access data stored 
on non-local disks (i.e. server machine's disks). 
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1.2. Overview of Sprite 

Sprite [OCD88] is a new operating system implemented at the University of Cali
fornia at Berkeley as part of the development of SPUR [Hil86], a high-performance 
multiprocessor workstation. A preliminary version of Sprite is currently running on 
Sun-2 and Sun-3 workstations, which have about 1-2 MIPS processing power and 4-16 

Mbytes of main memory. The system is targeted for workstations like these and newer 
models likely to become available in the near future, such as SPURs; we expect the 
future machines to have at least five to ten times the processing power and main 

memory of our current machines, as well as small degrees of multiprocessing. We hope 

that Sprite will be suitable for networks of up to a few hundred of these workstations. 

The interface that Sprite provides to user processes is much like that provided by 
Ut,HX [RiTI4]. The file system appears as a single shared hierarchy accessible equally 

by processes on any workstation in the network (see [We086] for information on how 
the name space is managed). The user interface to the file system is through UNIX-like 
system calls such as open, close, read, and write. 

Although Sprite appears similar in function to UNIX, we have completely re

implemented the kernel in order to provide better network integration. In particular, 

Sprite's implementation is based around a simple kernel-to-kernel remote-proced tre

call (RPC) facility [Wel86], which allows kernels on different workstations to request 

services of each other using a protocol similar to the one described by Birrell and Nel

son [BiN84]. The Sprite file system uses the RPC mechanism extensively for cache 

management. 

1.3. Thesis Overview 

This dissertation covers three areas: file caching, virtual memory, and the interac

tion between the two. The first part of the dissertation (Chapters 2 through 5) covers 

issues in file caching. Chapter 2 introduces the problems in file caching and discusses 

previous work in this area. This includes a discussion of an important set of trace-driven 

analyses that measured file activity in several timeshared UNIX 4.2 BSD systems 
[Ous85]. These simulations yielded two important results which motivated the Sprite 
caching design. First, they demonstrated the potential performance improvements pos

sible through caching; they found that even small caches can greatly improve perfor
mance. Second, they demonstrated that the policy that is used to manage dirty data 
may have a big impact on performance. The best policy is to delay write-backs, so that 

data is initially written to the cache and then written through to the disk or server some 

time later. 

Chapter 3 presents the design of the Sprite file system. The three goals that were 

the driving force behind the Sprite design were high-performance, consistency and sim
plicity. Like many other systems, Sprite attains high-performance by using caches on 

both client and server workstations. However, in order to achieve the highest perfor

mance possible the Sprite file system delays the writing of file data to the server and to 
disk. Under the Sprite writing policy, clients and servers do not write back file data 

until up to 30 seconds after the data is created. This delayed-write policy allows higher 
performance but also introduces extra consistency and recoverability problems which 



4 

do not occur in other systems. 

In spite of the complexities brought about because of the delayed-write policies, 
Sprite guarantees that workstations see a consistent view of the file system, even when 
multiple workstations access the same file simultaneously and the file is cached in 
several places at once. This is done through a simple cache consistency mechanism 
that flushes portions of caches and disables caching for files undergoing read-write shar
ing. The result is that file access under Sprite has exactly the same semantics as if all of 
the processes on all of the workstations were executing on a single timesharing system. 

The goal of this research was not just to build a distributed file system but also to 
provide quantitative measurements of the tradeoffs in cache design. Chapter 4 presents 
the results of running a collection of benchmark programs against Sprite and measuring 
the performance. On average, client caching resulted in a speedup of about 10-20% for 
programs running on diskless workstations, relative to diskless workstations without 
client caches. With client caching enabled, diskless workstations completed the bench
marks only 0-8% more slowly than workstations with disks. Client caches reduced the 
server utilization from about 5-27% per active client to only about 1-12% per active 
client. Since normal users are rarely active, my measurements suggest that a single 
server should be able to support at least 30 clients. In comparisons with Sun's Network 
File System [San85] and the Andrew file system [Sat85], Sprite completed a file
intensive benchmark 30-35% faster than the other systems. Sprite's server utilization 
was three times less than NFS but three times higher than Andrew. 

In addition to determining the effect of client caching, I was also interested in 
exploring the reliability/performance tradeoff: what effect does making data storage 
more reliable have on performance? The writing policy has a big impact on the level of 
reliability. Chapter 5 gives the result of running benchmark programs with 9 different 
writing polices on the client and 4 on the server. The results of the benchmarks indicate 
that in order to achieve good performance, either the client or the server must use a 
delayed-write policy; the absolute best performance is when they both use delayed
write policies. More restrictive policies such as write-through can cause serious perfor
mance degradation: if write-through is used on the server and on the client then bench
mark programs execute from 25-100% more slowly than if the server uses a delayed
write policy. 

The results from running benchmarks on Sprite show that large file system caches 
provide the best performance. However, large caches may conflict with the needs of 
the virtual memory system, which would like to use as much memory as possible to run 
user processes. Chapter 6 describes a simple mechanism through which the virtual 
memory system and the file system of each workstation negotiate over the machine's 
physical memory. This simple mechanism allows the file system cache to change in 
size as the relative needs of the virtual memory system and the file system change. 

The Sprite negotiation mechanism requires that memory be traded between the 
virtual memory system and the file system. What effect does this trading have on sys
tem performance? Is there a case where the trading is so intense that a small fixed-size 
cache would be best? Chapter 6 presen:s the results from a complex benchmark that 
causes large shifts of memory between the virtual memory and file systems. It shows 
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that the variable-size cache is never worse than any fixed-size cache. In the best case, 

when a large cache is needed, the variable-size mechanism works very well. In the 

worst case, when large amounts of trading are required, its performance is the same as 
that of a fixed-size cache. 

One of the features of the Sprite variable-size cache mechanism is that it allows 

file- and virtual-memory data to be treated differently. For example, the virtual
memory system can be given an advantage over the file system when the two are nego
tiating over the use of physical memory. The later part of Chapter 6 provides measure
ments of the impact of penalizing the file system on the performance of two file- and 

virtual-memory intensive benchmarks. It shows that penalizing the file system gives 
better interactive response than without a penalty while not degrading overall perfor

mance. 

Most of this dissertation focuses on the file system caching mechanism and the 
interaction bet\vcen the file system and the virtual memory system. However, I was 

also interested in looking at one particular virtual memory problem: copy-on-write 

mechanisms for fast process creation. Chapter 7 presents a simple copy-on-write 

mechanism that I implemented as part of Sprite. The mechanism is a combination of 
copy-on-write (COW) and copy-on-reference (COR). The COW -COR mechanism can 

potentially improve fork performance over copy-on-fork schemes from 10 to 100 times. 
However, in normal use, most of the pages have to be copied anyway; the overhead of 

handling additional page faults results in worse overall performance than copy-on-fork. 
A pure copy-on-write scheme would eliminate 10% of the page copies required under 

COW -COR, but may have worse overall performance than COW -COR on machines 
with virtually-addressed caches, due to additional cache-flushing overhead. Even 

highly optimized implementations can provide at best a 30% improvement in average 
fork performance. 

The final chapter of this dissertation, Chapter 8, offers some conclusions. 
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CHAPTER 2 

File Data Caching 

2.1. Introduction 

File system caches have been used for many years on timesharing systems to 

reduce the number of disk accesses. More recently they have begun to be used in distri

buted file systems where there are caches on both servers and clients (see Figure 2-1); 

the caches on server workstations are used to reduce disk traffic and the caches on 

clients are used to reduce network traffic and server loading. This chapter examines the 

previous work done in file system caching and the issues that must be addressed in 

order to build an efficient distributed caching mechanism. 

2.2. Server Caches 

The purpose of a server cache is to improve client performance by reducing disk 

accesses: data can be accessed from physical memory many times faster than from disk. 

The most important metric in measuring the effectiveness of a server cache is the traffic 

ratio: the ratio of physical disk accesses to logical accesses. Both reads and writes con

tribute to the rraffic ratio. Reads will require a disk access if the data being read is not 

resident in the cache and writes will require a disk access if the modified data is written 

File 
Traffic 

Network 

Disk 
Traffic 

Server 
Disk 

Disk 
Traffic 

Local 
Disk 

File 
Traffic 

Figure 2-1. File caches in a distributed file system. When :1 process makes a file ac
cess, it is presented first to the cache of the process's workstation ("file traffic"). If 

not satisfied there, the request is passed either to the local disk, if the file is stored there 
("disk traffic"), or to the server where the file is stored ("server traffic"). Servers 
also maintain caches in order to reduce their disk traffic. 
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to disk. How the write traffic impacts the traffic ratio depends on the writing policy 

(see Section 2.4). 

Although server caches have been implemented in several systems, the effective
ness of server caches in these systems has not been analyzed in any detail. However, 
there have been several attempts to predict the effectiveness of server caches by extra

polating from traces of timesharing systems. A cache on a file server that services mul

tiple clients should have behavior similar to that of a cache on a timesharing system 
with multiple users; in both cases the cache is a centralized resource that is shared by 
many users, where each client workstation represents a single user. 

One study of server caching was a trace-driven analysis of file activity in several 

timeshared UNIX 4.2 BSD systems [Ous85]. This study provided the main motivation 
for the Sprite cache design and I will refer to it extensively throughout this chapter. 
The systems studied by Ousterhout et a!. were used for program development, text for
matting, and computer-aided design. The study determined that for the traced systems 
even small file caches are effective in reducing disk traffic, and that large caches ( 4-16 

megabytes) work even better, cutting disk traffic by as much as 90 percent. The actual 

improvement that can be gained from caching depends on the writing policy, which will 

be explained below. 

A study very similar to Ousterhout's study was done by Kent at Purdue [Ken86]. 

He also did a trace-driven analysis of file activity in a timeshared Ut-..TIX 4.2 BSD sys

tem, and his results were nearly identical to Ousterhout's results. 

One other study of disk caching was done by Smith, who used trace data from 
IBM mainframes [Smi85]. Smith reported reductions in disk traffic similar to those 
reported in Ousterhout's study even though his data was much different. Unfortunately 
Smith's data did not distinguish read accesses from write accesses. Thus, he did not 
determine the impact of the writing policy on the traffic ratio. Nevertheless, his results 

indicate that caches from 2 to 8 megabytes are very effective, reducing disk traffic by 

over 80 percent. 

The results from the trace-driven analyses of timesharing traces indicate that 
server caches should be very effective in reducing disk accesses. However, this has not 
been verified by either measurement of existing systems or trace-driven analyses of 
traces taken from networks of workstations. 

2.3. Client Caches 

Whereas the purpose of caches on server workstations is to reduce disk accesses, 

the purpose of caches on client workstations is to reduce network accesses. If client 

caches are as effective in reducing network traffic as server caches appear to be in 

reducing disk traffic, then caches on clients could have a great impact on the perfor

mance of clients, the load on file servers and the load on the network. A reduction in 
the load on the network and the server will result in greater system scalability because 

there can be more clients per network and more clients per server. The relation 

between server load and system scalability was shown by Lazowska et al. [LZC86] in 

a study of remote file access where they concluded that the server CPU is the primary 
bottleneck that limits system scalability. 
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Caches can be used on clients for two purposes: to cache file data and to cache 

naming information. Caching of file data reduces the number of read and write opera

tions that require server accesses, and caching naming information can reduce the 

number of open and close operations that require server accesses. In this section I will 

concentrate on data caching, and in Section 2.5 I will explore the impact of name cach

ing. 

Systems that have implemented client caching have taken one of two approaches: 

cache file blocks in memory (e.g. LOCUS [PoW85, Wal83] and Sun's Network File 
System (NFS) [San85]) or cache whole files on a local disk (e.g. Andrew 

[Mor86, Sat85] and Cedar [SGN85]). The advantage of caching on a local disk is that 

local disks are generally much larger than physical memories. However, caching in 

main memory has numerous advantages over caching on a local disk. First, main

memory caches permit workstations to be diskless. Second, data can be accessed much 

more quickly from a cache in main memory than a cache on a local disk. Third, if the 

studies done by Ousterhout or Kent are indicative of client cache performance, then 

physical memories on client workstations are already large enough to provide high hit 

ratios. As memories get larger, main-memory caches will grow to achieve even higher 

hit ratios. 

Although several systems have implemented client caching in various forms, none 

of these systems has been analyzed to determine the impact of caching on system per

formance. For example, Howard et al. [How88] showed that with caches on clients, 

the load placed on the server by each client is very small. However, they did not deter

mine what the load would have been if there had been no caches on the client worksta
tions. The only analyses of the impact of client caching have been made with trace

driven simulations from UNIX timesharing traces. These simulations have shown that 
client caching can be effective in reducing network and server loading. Since the simu

lations have depended on the writing policy and the cache consistency policy used, I 

will not discuss the results of these simulations until after I have discussed the writing 

policy issues and cache consistency policies. 

2.4. Writing Policy 

The performance advantages of caching depend on the policy used for handling 

modified data blocks. In a distributed system, both the v..Titing policy used on servers 

and the policy used on clients can have a performance impact. Although different file 

systems have used different v..Titing policies, there have been no measurements of the 

performance impact of the writing policy. However, results from four studies of Ul\.TIX 

timesharing traces can be used to help predict the best writing policy for clients and 

servers. In addition to the two previously-mentioned studies by Ousterhout and Kent 

there are also studies that were done by Floyd [Flo86] and Thompson [Tho87]. Floyd's 

studies are nearly identical to Ousterhout's studies so I will not mention them further. 

Thompson's study was a follow-on study to the study done by Ousterhout et al.; 

Thompson's results are based on very detailed traces of Ul\.lJX timesharing systems. 

The simplest policy for managing modified data blocks is to write them through to 

the server and/or the disk as soon as they are placed into the cache. NFS uses write-
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through on the server and RFS [BLM87] uses write-through on clients. The advantage 

of a write-through policy is its reliability: little information is lost when a client or 
server crashes. However, each write must wait for the data to be written to the server 
and/or disk, which results in poor write performance. Also, Ousterhout's study deter

mined that about 1/3 of all file accesses are writes. This means that with a write
through policy disk or server traffic cannot be reduced by more than about 2/3. Kent's 

study of Ul\T<: file system activity confirmed this by demonstrating that with a write

through policy the traffic ratio was over 27 percent. 

An alternative policy to write-through is buffered write, which delays the write to 

the server or disk until the last byte of a cache block is written. If a user writes data in 
chunks smaller than the file system block size, then disk and network traffic can be 
reduced. This is actually the policy that was used by the Ousterhout study when the 
authors measured the effect of different writing policies. Thompson simulated this pol

icy and discovered that over half of all write traffic caused by a pure write-through pol
icy can be eliminated with buffered write. Thus even buffering a single block can have 

a profound effect on writing performance. 

The Andrew and LOCUS systems use a writing policy called write-back-on-close. 

Under this policy, writes return as soon as the data is in the cache, but the data is writ

ten back to the server when the file is closed. This results in better write performance 
but causes processes to wait when they close the file. 

The policy used by NFS clients is a combination of 'WTite-back-on-close and 
write-back-as-soon-as-possible (ASAP). When data is written to the cache it is 
scheduled to be written through to the server as soon as possiblet, but the write returns 

immediately. When the file is closed, the client ensures that all of the file data has been 
written through to the server. This should have similar performance to a pure write

back-on-close policy except that the close of the file may not have to wait as long 

because some of the dirty data may have already been written back when the file is 

closed. Unfortunately, the Ousterhout study determined that most files are open only a 
very short period of time: 75% of files are open less than 0.5 seconds and 90% less than 
10 seconds. These short open times imply that many files may be not be open long 
enough to allow their dirty blocks to be \\Titten back before the file is closed. 

The best policy for performance is to delay the writing of blocks until the block is 
ejected from the cache. A delayed-write policy has two advantages. First, \\'rites and 

closes can complete without waiting for data to be \\Titten through. Second, 

Ousterhout's study determined that 20 to 30 percent of new data is deleted within 30 

seconds and 50 percent is deleted within 5 minutes. Under a delayed-write policy, 
many blocks will never need to be written to disk at all; they will live and die in the 

cache. Unfortunately, a delayed-write policy has reliability problems, since large 

amounts of data can be lost during a system crash. U:t\'1X uses a compromise solution 
in which blocks are not written through to disk until they have been in the cache for 30 

seconds. This gives better reliability than a true delayed-write policy, yet eliminates 20 

t NFS actually does not schedule the write-back of the block until the block is full. 
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to 30 percent of server and/or disk writes. 

A different type of policy that could be used is a combination of delayed-write and 

write-through policies depending on the file type. This type of policy has not been 

implemented in any system, but Thompson simulated two mixed policies. In one pol

icy he varied from a 1 second delayed-write policy for editor temporaries up to full 

delay for temporary files (he called this the mixed-policy), and in the other policy he 

used buffered-write for all except temporary files (he called this the delay-temp policy). 

The delay-temp policy provides a write traffic ratio slightly lower than the 30-second

delay policy. The mixed-policy lies between the delay-temp policy and a 5-minute

delay policy. Thus, by special-casing temporary files, clients can get write-traffic ratios 

that are better than a 30 second delayed-write policy, but with higher reliability. 

One thing to note about all of the U:t\TIX studies is that their data does not include 

writes of file meta-data: data that describes the contents of the file. In a UNIX file sys

tem there are two types of meta-data: indirect blocks and file descriptor blocks. File 

descriptors describe the attributes of the file and where the first few blocks for the file 

are on disk. Indirect blocks are used to describe where the data blocks for large files are 

kept on disk. Depending on the implementation of the file system, each write-back of 

data may require writes of both indirect blocks and file descriptor blocks. For example, 

if a write-through policy is used on a server, then each time that a data block is written 

to disk for a large file both the file descriptor and the indirect block must be written to 

disk as well; if the descriptor and indirect blocks are not written to disk, then during a 

system crash the location of the data block may be lost. Thus, because of file meta

data, write-through and simibr types of policies may cause the traffic ratio to go up by 

at least a factor of three. 

2.4.1. Client and Server \Vriting Policies 

In a system that contains both clients and servers, the best approach may be to use 

different policies on the client and the server. For example, a policy that uses write

through on servers and delayed-write on clients would result in no loss of data from a 

server crash, yet allow clients to achieve very high performance. Unfortunately, there 

have been no simulations or measurements of the various combinations of client and 

server writing policies. 

2.5. Cache Consistency 

Allowing clients to cache files introduces a consistency problem. What happens if 

a client modifies a file that is also cached by other clients? Can subsequent references 

to the file by other clients return "stale" data? The definition of consistency that I will 

use is that a client workstation sees a consistent view of a file if each read operation 

returns the most recently written data for the file. The class of cache consistency algo

rithms that I will examine in this section are all based on performing consistency on a 

per-file rather than a per-block basis. This is the method used in most existing file sys

tems and is practical because studies have shown that files are generally read and writ

ten in their entirety [0us85]. Per-file approaches are simpler and can potentially lower 

the cost of consistency by requiring fewer consistency actions (one per file rather than 
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one per block). 

It is important to distinguish between consistency and correct synchronization. 
The cache consistency mechanism cannot guarantee that concurrent applications per

form their reads and vYTites in a sensible order. If the order matters, applications must 

synchronize their actions on the file using system calls for file locking or other available 

communication mechanisms. The purpose of cache consistency is to eliminate the net
work issues and reduce the problem to what it was on timesharing systems. 
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Figure 2-2. Sequential and concurrent write sharing. The figure on the top shows 
sequential write sharing. Cl opens a file for reading, loads blocks into its cache and 
then closes the file. C2 then opens the same file, modifies it and closes. When C 1 
opens the file again it needs to make sure that the data that it loaded into its cache 
from the first open is not stale; C2 could have overwritten data that Cl had previously 
loaded into its cache. The figure on the bottom shows concurrent write sharing. Cl 
opens a file for reading and before it closes it C2 opens the same file for writing; the 
dark shaded region on the left shows the time where Cl and C2 are concurrently read
write-sharing the file. After C2 opens the file Cl closes the file and then opens the file 
for writing before C2 closes the file; the dark shaded region on the right shows the time 
where Cl and C2 are concurrently write-write-sharing the file. 
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There are two types of write sharing that can cause consistency problems: sequen
tial write-sharing and concurrent write-sharing (see Figure 2-2). Sequential write
sharing occurs when a file is shared but is never open simultaneously for reading and 
·writing on different clients. This can result in clients maintaining stale data for a file in 
their cache after they have closed the file. In order to achieve consistency, the client 
must be able to detect this stale data by the time it reopens the file. 

The other type of sharing is concurrent write-sharing. This type of sharing occurs 
when a file is open on one or more clients at the same time and at least one of the 
clients modifies the file. In this case a client must be able to detect its stale data when
ever it attempts to read data from the file. 

The amount of file sharing that occurs has an impact on the importance of cache 
consistency. Jim Thompson analyzed the amount of file sharing that occurred in a 
Ul\'IX environment [Tho87] and got several interesting results: 

• 2.2% of the opens of files resulted in concurrent v.Tite-sharing. 

• Only 2% of the bytes transferred were to files that were undergoing concurrent 
write-sharing. 

• Nearly all concurrent write-sharing occurred to a single file, the letclutmp file, 
which keeps track of users logged on. 

• Slightly more than 25% of all opens occur to files that are sequentially \\Tite 
shared. 

These results indicate that although concurrent write-sharing does happen, it is 
very rare. In contrast sequential write-sharing happens fairly frequently (one out of 
every 4 opens). 

2.5.1. Previous Implementations of Cache Consistency 

Each of the many network file systems in existence provides a different implemen
tation and level of consistency. This section gives a survey of the current methods used 
for cache consistency. All of the file systems that I will describe cache file data on both 
client and server workstations. 

2.5.1.1. 1'\FS 

NFS is based on stateless servers, which means that servers keep no information 
that can be lost upon a server crash. This requires all state to be kept in non-volatile 
memory (i.e. on disk). As a consequence of the stateless implementation, servers keep 
no information about which clients have files open. This makes precise cache con
sistency difficult. The result is that NFS does not provide exact cache consistency for 
either type of sharing. If a file is undergoing concurrent \\Tire-sharing, then the out
come is undefined. Users are warned to avoid this type of sharing. Sequential write
sharing is handled using a probabilistic approach. Each client caches file version infor
mation for three seconds. If when a file is opened, the local version information is less 
than 3 seconds old, then the client believes that it has the most recent copy of the file. 
Otherwise it will verify its version with the file's server and flush its cache if necessary. 
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2.5.1.2. Cedar 

The Cedar file system [SGN85] provides consistency through the use of "immut

able files.'' Each time that a file is modified, new version of the file is created. When 

a file is opened, a user specifies which version of the file to use. If the user specifies a 

version that the client does not have cached on its disk, then a new copy of the file is 

loaded from the server. Once a client opens a given version of the file, it is guaranteed 

to see a ''consistent'' view of that version because the file is immutable; if two clients 

are concurrently write-sharing a file, they will both be accessing different versions of 

the file. Note that Cedar does not satisfy my definition of cache consistency because 

once a file is open reads are not guaranteed to return the most recently written data. 

2.5.1.3. Andrew 

Andrew [Mor86, Sat85] only supports sequential write-sharing. If two clients are 

undergoing concurrent write-sharing, then clients will not see a consistent view of the 

file. Sequential write-sharing is supported by guaranteeing that, once a file is closed, all 

data is back on the server, and by ensuring that a client is notified by the server when

ever the client's cached copy becomes out-of-date. 

2.5.1.4. LOCUS 

LOCUS [PoW85, Wal83] supports both concurrent and sequential write-sharing. 

It uses a complex mechanism based on passing tokens between workstations that are 

accessing the file. There are two types of tokens: read and write. A client must possess 

a token in order to access a file. Multiple clients may hold a read token if there is no 

write token. If there is a write token, then no client may possess a read token and only 

one client may hold the write token. When a token is released, the file that the token 

pertains to must be written back to the server and invalidated from the cache. The algo

rithm must ensure that all sharers of a file get a fair chance at accessing the file. 

2.5.1.5. Apollo 

The Apollo Aegis file system [LLH85, Lea83] uses file locking to guarantee con

sistency; consistency is not guaranteed unless clients lock files before they perform read 

or write operations. A file can be locked by multiple clients when there are only 

readers, and by only a single client if the file is locked for writing. Caches are kept con

sistent by bringing a file to a consistent state when a client locks a file. Before a client 

reads or writes a newly locked file, all stale data is removed from the client's cache and 

the server makes sure that it has the most recent data from the file. The file system 

guarantees that the server has the most recent data by writing back all modified data 

whenever a file is unlocked. Like in NFS, stale data is eliminated by associating aver

sion number with each file. This version number is the time that the file was last 

modified. It is stored in the server that stores the file and in each client that has pages of 

the file stored in its memory. When a client locks a file, it compares its version number 

for the file with the version number returned by the server. If the version numbers do 

not match, then the client removes the file's blocks from its memory. 
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2.5.1.6. RFS 

The RFS system [Rif86] handles both sequential and concurrent write-sharing. 

Sequential write-sharing is handled by using a write-through writing policy and by con

tacting the server whenever a file is opened to ensu:-:: that the cached copy is up to date. 

RFS handles concurrent write-sharing by disabling client caching when it occurs. Since 

RFS is based on write-through and hence must contact the server on every write, it can 

detect on the first write to a file that concurrent write-sharing is about to occur. When it 

detects this, it forces all reads and writes to go through to the server for the file that is 

being shared. 

2.5.1.7. V Storage Server 

The V Storage Server at Stanford [ChR85] provides multiple approaches to con

sistency. One approach is called T-consistency and is used for immutable files. The 

data pages read from an immutable cached file are consistent with some version of the 

file, either the current version or a version that is at most T milliseconds out of date. 

Each client polls the server of cached files every T milliseconds to determine if its 

cached files are up to date. The other approaches to consistency rely on block- or file

level locking. 

2.5.2. Verifying Consistency 

All of the consistency mechanisms that I have described require that a client be 

informed when a cached copy becomes out of date. This can be done in two ways: the 

client can ask the server about the state of the file before it begins using it, or the server 

can inform the client when the client's cached copy becomes out of date. The first 

approach generally requires that the server be contacted whenever a file is opened. This 

has the advantage over the second approach that it does not require that clients use local 

name caching; the server can do all name lookups for the client. However, because the 

second approach allows opens to happen locally, it offloads the server and the network, 

and decreases the amount of time that it takes for a client to open a file. Most systems 

verify consistency when a file is opened or locked. The Andrew file system initially 

verified consistency when a file was opened, but, after discovering that their servers 

were becoming seriously overloaded, they changed to use the second approach 

[How88]. 

2.6. Trace-Driven Analyses of Client Caching 

Jim Thompson used U:t\TJX traces gathered from a single timeshared machine to 

perform a trace-driven simulation of the impact of client caching on performance 

[Tho87]. In his simulations every user on the timesharing system represents a different 

client. His measurements depend on which of 5 cache consistency algorithms are used; 

all of his algorithms provide consistency for both concurrent and sequential write

sharing. One of the cache consistency policies that Thompson simulated is the Sprite 

policy, which I will describe in the next chapter; I will examine his results in more 

detail after I describe the Sprite policy (see Section 3.3.4.2). 
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Thompson used two metrics to measure the impact of client caching. One is the 

miss ratio, which is an indication of the effect of client caching in reducing server 

interactions. The other metric is the transfer ratio, which reflects both server load and 

network bytes transferred for all types of client requests including reads, writes and 

opens. Thompson's results indicate that, depending on the cache consistency policy 

used, client caching can cut the miss ratio to 5-30 percent and lower the transfer ratio to 

23-45 percent. Thus, client caching can potentially make clients run up to 20 times as 

fast and reduce server and network loading by more than a factor of 4. However, 

Thompson's studies are merely an indication of the effect of client caching on perfor

mance. The actual impact will depend on the fraction of time that each client spends 

doing file system operations. 

2.7. Summary and Conclusions 

This chapter has explored the important issues in file data caching and its impact 

on performance by looking at previous work done in this area. Because there has been 

little measurement of the impact of file caching on real systems, the impact of caching 

on performance can only be predicted by using the results of trace-driven simulations of 

data taken from timesharing systems (e.g. from UNIX). The simulations show that 

caches on client and server workstations can potentially have a large impact on perfor

mance; the caches on servers can reduce the number of disk accesses, and the caches on 

clients the number of server accesses. However, the simulations can only predict the 

impact of caching on performance; the actual impact of caching on performance must 

be determined by measuring a real system. 

One important factor when designing a caching mechanism is the writing policy. 

In a system that uses both client and server caching, the writing policy on both the 

client and the server is important. Unfortunately, there have been simulations of writ

ing policies that have looked at either the server's policy or the client's policy, but not 

both together. Simulations indicate that the most effective writing policy is the 

delayed-write policy, which provides the lowest nurr:ber of disk and server accesses and 

the smallest delay to user processes. However, debyed-write policies are also the least 

reliable policies. 

Another important factor to consider when designing a file system that uses client 

caching is the cache consistency policy. In order to allow users to share files as easily 

in a distributed system as they once could on timesharing systems files must be kept 

consistent. However, most current distributed systems do not provide the same level of 

consistency that was available in timesharing systems; some do not provide con

sistency at all and others do not handle the case when a file is being concurrently write

shared. 

In summary, previous work in the area of file data caching has been lacking in 

several important areas. First, there has not been any measurement of real systems; all 

results have been obtained through trace-driven simulation. This goes for analyses of 

caching performance, the effect of writing policies and the impact of cache consistency. 

Second, there has not been any analysis of writing policies where both the client and the 

server policies have been taken into account. Finally, most systems do not provide 
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strong enough consistency. The next three chapters address these areas by presenting 

the design and measurement of the Sprite file system. 
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CHAPTER 3 

Sprite File System Caching 

3.1. Introduction 

We had four main goals in mind when designing the Sprite caching mechanism: 

• To build a high-performance file system for both clients with disks and clients 
without disks. 

• To gain insight into the tradeoffs involved in building a caching mechanism. 

• To maintain Ul\lJX semantics including supporting all normal user-level file sys
tem operations. 

• To keep things as simple as possible. 

From the results given in the previous chapter, it was evident that the way to attain 
the highest-performance file system was to use large file data caches on both clients and 
servers. In addition, non-write-through caching on clients was clearly the method to 
use to attain the highest possible writing performance; we chose to use a 30-second 
delayed-write policy like the one used in the original versions of UNIX. 

Although it was clear that caching was necessary to attain high performance, it 
was not clear whether caches on clients were absolutely necessary; maybe caches on 

servers would be enough. If client caches could be eliminated, then many portions of 
the file system could be simplified; for example, there would be no cache consistency 
problems. I was interested in measuring the impact of caching on diskless client perfor
mance, network loading, and server loading. In order to allow these measurements to 
take place the Sprite file system can disable client caching. This ability to turn off 
caching is also used as part of the Sprite cache consistency algorithm. 

In addition to providing clients with high performance, we also wanted to provide 

the same view of file data to users of the Sprite distributed file syst~m at that given by 
timesharing UNIX; this includes providing the same user-level file system operations 
that are supported by UNIX (see Table 3-1 for a list of file system operations supported 
by Sprite). On timeshared UNIX, all the files and processes are on a single machine, so 

each read returns the most recently written data; thus, users do not have to take any 
explicit actions such as file locking in order to ensure data consistency. This allows 
users to easily share file data without worrying about inconsistencies. In order to allow 
easy sharing in Sprite, we provide a simple cache consistency mechanism that keeps 
caches consistent both for concurrent and sequential write-sharing. 

A high-performance distributed file system, especially one that maintains cache 
consistency, can potentially be complex. However, during the implementation of the 
file system, we tried to make design decisions that would allow us to simplify the 
implementation without sacrificing performance or consistency. One major simplifying 



Sprite User-Level File Svstem Operations 

Operation Action 

open Open a file given a name. 

close Close a file. 

read Read data from a file. 

write Write data to a file. 

get attributes Get the attributes of a file such as access times, file size 
and permissions. 

Table 3-1. User-level operations supported by the Sprite file system. There are other 
operations supported by Sprite (such as flock) but they are not relevant to the caching 
issues described in this chapter. 
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design decision was that we decided to do no local name caching; all naming operations 
on files (e.g., open) and all closes of files must go through to the server of the file. This 
simplified the file system for two reasons. First, we did not have to worry about name 
caching at all. Second, it allowed us to build a very simple data cache consistency algo
rithm. However, it had the potential to increase server load, as was discovered by the 
Andrew file system when its authors also required that the server be contacted on each 
file open [How88]. The next chapter will include a discussion of the impact of this 
decision on Sprite file system performance. 

The rest of this chapter covers the design of the caching mechanism in the Sprite 
file system, and is organized as follows: Section 3.2 covers the basic structure of the 
cache; Section 3.3 presents the Sprite cache consistency mechanism; Section 3.4 
describes how files are represented on disk; Section 3.5 covers details of the implemen
tation of the file system, including discussions of reliability and crash recovery. 

3.2. Basic Cache Structure 

The Sprite caches are organized on a block basis using a fixed block size of 4 
Kbytes. The cache block size corresponds to the disk block size, which is also 4 
Kbytes. We chose the disk block size baseC: on the results obtained by McKusick et al. 
[MJL84], who determined that large block sizes on the order of 4 Kbytes result in sub
stantially better file system performance than smaller block sizes. In addition, studies 
by Kent [Ken86] and Ousterhout [Ous85] also demonstrate the virtues of a large block 
size. Whether the disk block size should be even larger is an open question which we 
will address as we gain more experience with the system. 

The choice to use a fixed block size was dictated by our striving for simplicity. 
The other option was to use block sizes in the range from 1 Kbyte up to 4 Kbytes 
depending on the amount of data in the block. The potential advantage of this scheme 
is that it may waste less space than the fixed block size scheme. However, it is more 
complex and, as memories get larger, the advantage of conserving file system cache 
space should diminish. 
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3.2.1. Block Addressing 

Cache blocks are addressed virtually, using a unique file identifier provided by the 
server and a block number within the file. We used virtual addresses instead of physi

cal disk addresses so that clients could create new blocks in their caches without first 
contacting a server to allocate physical disk blocks. Virtual addressing also allows 

blocks in the cache to be located without traversing the file's disk map. By using vir
tual addresses we were able to use the same implementation for the client cache as for 

the server cache. 

For files accessed remotely, client caches hold only data blocks. Servers also 
cache file maps and other disk management information. These blocks are addressed in 
the server's cache using the blocks' physical disk addresses along with a special "file 
identifier'' corresponding to the physical device. 

Although a file's disk map does not have to be consulted when locating a block in 

the server's cache, the map does have to be used when the block is read into the 

server's cache and when it is written to disk. Since looking in a file map is a fairly 

expensive operation, the server keeps with each cache block the physical location of the 

block on disk. In this way. the location of the block on disk only has to be looked up 

when it is put into the cache, not when the block is written out to disk. 

3.2.2. Writing Policy 

As mentioned earlier, Sprite uses a 30-second delayed-write policy. Under this 
policy, blocks are initially written only to the cache, and then written back 30 seconds 
later. This policy is used both on servers and clients, and is implemented by having a 

process scan through the cache every 5 seconds and schedule write-backs for all dirty 

blocks that have not been modified in the last 30 seconds. A block written on a client 
will be written to the server's cache in 30-35 seconds, and will be written to disk in 30-

35 more seconds. Thus a block can be dirty for up to 70 seconds before it ends up get
ting written back to disk. 

3.2.3. Block Management 

Sprite uses a least-recently-used (LRU) block replacement strategy. Each block in 

the cache that contains valid data is kept on a linked list called the LR U list; whenever a 

block is accessed, it is moved to the tail of the list. All blocks that do not contain valid 

data are kept on a separate list called the free list. A new block is allocated in the fol
lowing manner. If the free list contains a block, then the first block on the free list is 

used. Otherwise blocks are removed from the head of the LRU list until a clean block 

is found; any dirty blocks that were removed from the head of the LRU list are 
scheduled to be written back to the server's cache or disk. Once a new block is allo
cated it is moved to the tail of the LRU list. 

Dirty blocks that need to be written back are kept on a dirty list that is associated 

with each file, and all files with non-empty dirty lists are kept on a list of dirty files. 

The dirty blocks are written back by a group of block cleaner processes. A dirty block 

is scheduled to be v.'li.tten back either because it comes to the head of the LRU list or 

because it is dirty and it has not been modified in 30 seconds. \Vhen a block is 
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Unused blocks In-use, clean blocks In-use, dirty blocks 

Figure 3-1. List data structures. The file system maintains three global lists and one 
per-file list. All blocks that are not currently being used to cache file data are on the 
free list. All blocks that are being used to cache data are on the LRU list. Dirty blocks 
that are scheduled to be written back are on the dirty list for the file that they reside in 
and all the file dirty lists are linked together. In this example there are 3 unused blocks 
that are on the free list. The LRU list contains 2 blocks from file A (denoted A-1, A-
2), 3 blocks from file B (denoted B-1, B-2 and B-3) and one block from file C (denoted 
C-1). Blocks A-1 and A-2 are dirty and they are both on file A's dirty list because they 
have been scheduled to be written back. Block B-3 is dirty and it is on file B 's dirty 
list because it also has been scheduled to be written back. Block C-1 is also dirty but it 
is not on file C's dirty list because it has not been scheduled to be written back yet. 

scheduled for write back, it is put onto the dirty list for the file in which it resides, the 
file is put onto the list of dirty files, and one of the block cleaner processes is awakened 
and given the responsibility of writing back all the blocks on the file's dirty list. In 
order to reduce synchronization problems, there is only one process writing back a file's 
dirty blocks at any given time. Normally, after a block is written back, it is left in its 
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current position in the LRU list. However, if the block was placed onto the dirty list 
because it came to the head of the LRU list and needs to be recycled, then it is put onto 
the free list instead (see Figure 3-1 for a summary of the list data structures). 

3.2.4. Synchronization 

The Sprite kernel is written so that multiple processes can be executing in the ker
nel at the same time. Since multiple processes could be accessing the same file at the 
same time, the file system uses locking to ensure that only one operation is occurring on 
a file at once. These operations include reading, writing, opening, closing, and getting 
the attributes of a file. If multiple user processes wish to access the same file at the 
same time, the accesses will be serialized once the processes begin executing inside the 
file system code. This explicit locking is required in order to protect kernel data struc
tures that are associated with each file. 

3.3. Cache Consistency 

The Sprite file system provides cache consistency for both concurrent and sequen
tial write-sharing. However, because of the expected infrequency of concurrent write
sharing, the algorithm is optimized for the case when there is no concurrent write
sharing. Sprite uses the file servers as centralized control points for cache consistency. 
Each server guarantees cache consistency for all the files on its disks, and clients deal 
only with the server for a file: there are no direct client-client interactions. The Sprite 
algorithm depends on the fact that the server is notified whenever one of its files is 
opened or closed, so it can detect when concurrent write-sharing is about to occur. 

3.3.1. Concurrent 'Write-Sharing 

Concurrent write-sharing occurs for a file when it is open by multiple clients and 
at least one of them has it open for writing. Sprite deals with this situation by disabling 
client caching for the file, so that all reads and writes for the file go through to the 
server. When a server detects (during an "open" operation) that concurrent write
sharing is about to occur for a file, it takes two actions. First, it notifies the client that 
has the file open for writing, if any, telling it to vnite all dirty blocks back to the server. 
There can be at most one such client. Second, the server notifies all clients that have 
the file open, telling them that the file is no longer cacheable. This causes the clients to 
remove all of the file's blocks from their caches. Once these two actions are taken, 
clients will send all future accesses for that file (both reads and writes) to the server. 
The server's kernel serializes the accesses to its cache, producing a result identical to 

running all the client processes on a single timeshared machine. 

Caching is disabled on a file-by-file basis, and only when concurrent write-sharing 
occurs. A file can be cached simultaneously by many clients as long as none of them is 
writing the file, and a writing client can cache the file as long as there are no concurrent 
readers or writers on other workstations. When a file becomes non-cacheable, only 
those clients with the file open are notified; if other clients have some of the file's data 
in their caches, they will take consistency actions the next time they open the file, as 
described below. A non-cacheable file becomes cacheable again once it is no longer 
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undergoing concurrent write sharing; for simplicity, however, Sprite does not not re
enable caching for files that are already open. 

3.3.2. Sequential ·write-Sharing 

Sequential write-sharing occurs when a file is modified by one client, closed, then 
opened by some other client. There are two potential problems associated with sequen
tial write-sharing. First, when the second client opens the file, it may have out-of-date 
blocks in its cache. To solve this problem, servers keep a version number for each file, 
which is incremented each time the file is opened for writing. Each client keeps the 
version numbers of all the files in its cache. When a file is opened, the client compares 
the server's version number for the file with its own. If they differ, the client flushes the 
file from its cache. This approach is similar to those of NFS and of the early versions of 
Andrew. 

The second potential problem with sequential write-sharing is that the current data 
for the file may be in some other client's cache (the last writer need not have flushed 
dirty blocks back to the server when it closed the file). Servers handle this situation by 
keeping track of the last writer for each file; this client is the only one that could poten
tially have dirty blocks in its cache. When a client opens a file, the server notifies the 
last writer (if there is one and if it is a different client than the opening client), and waits 
for it to write its dirty blocks through to the server. This ensures that the reading client 
will receive up-to-date information when it requests blocks from the server. 

3.3.3. Simulation Results 

3.3.3.1. Cache Consistency Overhead 

While we were designing the Sprite caching mechanism, I used the trace data from 
the Ousterhout et al. study to estimate the overheads associated with cache consistency. 
I also estimated the overall effectiveness of client caches. The traces were collected 
over 3-day mid-week intervals on 3 V AX-lln80s running 4.2 BSD U~TJX for program 
development, text processing, and computer-aided design applications; see [Ous85] for 
more details. The data were used as input to a simulator that treated each timesharing 
user as a separate client workstation in a network with a single file server. The results 
are shown in Table 3-2. Client caching reduced server traffic by over 70%, and resulted 
in read hit ratios of more than 80%. 

Table 3-3 presents similar data for a simulation where no attempt was made to 
guarantee cache consistency. A comparison of the bottom-right entries in Tables 3-2 
and 3-3 shows that about one-fourth of all server traffic in Table 3-2 is due to cache 
consistency. Table 3-3 is not realistic, in the sense that it simulates a situation where 
incorrect results would have been produced; nontheless, it provides an upper bound on 
the improvements that might be possible with a more clever cache consistency mechan
ism. 

I performed these simulations before we implemented our Sprite file system 
design, so that I could determine if our design was sound. The results from these 



Server Traffic With Cache Consistencv 

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio 

0 Mbyte 445815 172546 618361 100% 

0.5 Mbvte 102469 96866 199335 32% 

1 Mbvte 84017 96796 180813 29% 

2 Mbvtes 77445 96796 174241 28% 

4 Mbvtes 75322 96796 172118 28% 

8 Mbvtes 75088 96796 171884 28% 

Table 3-2. Client caching simulation results, based on trace data from BSD study. 
Each user was treated as a different client, with client caching and a 30-second 
delayed-write policy. The table shows the number of read and write requests made by 
client caches to the server, for different client cache sizes. The "Traffic Ratio" 
column gives the total server trafflc as a percentage of the total file traffic presented to 
the client caches. Write-sharing is infrequent: of the write traffic, 4041 blocks were 
written through because of concurrent write-sharing and 6887 blocks were flushed 
back because of sequential write-sharing. 

Server Traffic, Ignoring Cache Consistencv 

Client Cache Size Blocks Read Blocks Written Total Traffic Ratio 

0 Mbvte 445815 172546 618361 100% 

0.5 Mbyte 80754 93663 174417 28% 

1 Mbvte 52377 93258 145635 24% 

2 Mbvtes 41767 93258 135025 22% 

4 Mbvtes 38165 93258 131423 21% 

8 Mbytes 37007 93258 130265 21% 

Table 3-3. Traffic without cache consistency. Similar to Table 3-1 except that cache 
consistency issues were ignored completely. 
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simulations show that a) client caching can greatly reduce server traffic and b) our 

cache consistency algorithm does not introduce a significant overhead. These results 

strengthened our hypotheses about the effectiveness of client caching and our simple 

cache consistency algorithm, and indicated to us that we should proceed with the imple

mentation. 

3.3.3.2. Simulation of Several l\'lechanisms 

Jim Thompson [Tho87] did a much more detailed simulation of cache consistency 

policies than we did. He simulated not only the Sprite policy, but sevaal other policies 

as well. His simulation was done after we had already implemented the Sprite mechan

ism, used the same detailed traces that were described in Chapter 2, and used his 

transfer ratio, a complex measure of server and network loading, as the metric by which 

to judge performance. The Sprite mechanism was by far the simplest of all the 
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mechanisms that he simulated, but also had the worst perfom1ance of all of the 

methods, with a transfer ratio of 45%. He estimates that the transfer ratio can be 
lowered to 35% if opens and closes do not have to go through to the server and to 23% 

if very sophisticated and potentially less practical algorithms are used. The result is 
that a sophisticated algorithm can reduce the transfer ratio by up to a factor of 2. 

Thompson's simulations indicate that the Sprite algorithm may provide a much 

higher load on the network and the server relative to more sophisticated algorithms. 
The results in the next chapter will support Thompson's results by showing that, if 
clients are allowed to cache naming information so that they can open and close files 

without contacting a server, the server utilization and network utilization can be cut by 
nearly a factor of 2. However, the next chapter will also show that, even with the sim
ple Sprite cache consistency algorithm, client caching provides excellent diskless client 

performance while reducing the server load and network load to very reasonable levels. 
Thus, although more complex cache consistency algorithms may reduce server and net
work loading, in practice it does not matter; the use of client caching is much more 

important to performance than which cache consistency algorithm is used. 

3.4. Sprite File Structure on Disk 

The Sprite file system's data structures used to describe where files are located on 
disk are similar to the UNIX data structures. Each disk contains three types of data: file 

descriptors, file data blocks and indirect blocks. Among other file attributes, each file 

descriptor contains information about where on disk a file's data blocks are located. 
Each descriptor contains 10 direct block pointers, one singly-indirect block pointer and 
one doubly-indirect block pointer (see Figure 3-2). 

The file descriptors contain low-level descri;nions of files. Built on top of the file 

descriptors is the directory structure, which gives a mapping from a file name to a file 
descriptor. As in Ul\TJX, in Sprite directories are stored like normal files. Each direc
tory contains a list of (file name, file descriptor id) pairs; the file descriptor identifier is 

used to locate the file descriptor for the file. 

Although Sprite's file descriptor and directory structures are similar to those in 
UNIX, the organization of the disk is different; we decided to concentrate our efforts on 

building an efficient caching mechanism rather than on optimizing disk performance. 

All of the file descriptors are grouped together at the beginning of the disk; since each 

file descriptor is only 128 bytes, each file system block contains 32 file descriptors. The 

rest of the disk consists of data blocks and indirect blocks. 

When a new block is allocated to a file, a data block and possibly an indirect block 

will have to be allocated. If a data block has no preceding block in the file, then a ran

dom data block is chosen out of all available data blocks. Otherwise, a block that is 
nearest on the disk to the preceding block is chosen. This is done to reduce the number 

of seeks between reads and writes of successive data blocks. When an indirect block is 

allocated, a random block is chosen. 

When a new file is created, a file descriptor must be allocated for the new file. If 

the file that is being created is a normal file, then Sprite attempts to allocate a file 
descriptor that is in the same or nearby file descriptor block as the file's directory. This 
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Ref Time: OcL 3, 1988 

Owner: Kelson 

Block pointers: 

• • •! S~n I 

Figure 3-2. File disk structure. Among other attributes such as the reference time and 
the owner, a file descriptor contains the location of the data blocks on disk. Each 
descriptor contains 10 direct block pointers, 1 singly-indirect block pointer and 1 
doubly-indirect block pointer. In this picture the direct block pointers are denoted D-0 
through D-9 and they contain the disk addresses of blocks 0 through 9 in the file. The 
singly-indirect block pointer is denoted SI and it points to a block of 1024 direct block 
pointers; these pointers point to blocks 10 through 1033 in the file. The doubly
indirect block pointer is denoted DI and it points to a block with 1024 singly-indirect 
block pointers. The first singly-indirect block contains pointers to blocks 1034 through 
2057 in the file, the second singly-indirect block points to blocks 2058 through 3081 
and so on. 

allows the file descriptors for many files within a given directory to be read or written 
with only one disk operation. When a new directory is created it is put into a random 

descriptor block. This is done so that the directories will be randomly distributed 
amongst the file descriptors; otherwise all directories wou!d end up fighting for file 
descriptors in the same file descriptor blocks. 
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There are two potential problems with the simple Sprite disk layout. First, when a 
block is allocated to a file, Sprite chooses the nearest block on disk even if the block is 
not rotationally optimal; the result is that, in general, Sprite is only able to transfer one 
block per disk revolution. Second, Sprite does not attempt to put either the file descrip
tor or the indirect blocks for a file near to the data blocks for the file. This is different 
from the Ul\TIX 4.2 BSD implementation, which puts file descriptors, indirect blocks 
and data blocks for a file within the same group of cylinders on disk [MJL84]. The 
result is that Sprite may have to perform longer seeks between reads and writes of the 
three types of disk data. Because all three types of data are cached by Sprite, reading 
the data from disk should not be a problem. However, the disk layout does impact writ
ing performance and will be discussed further in Chapter 5. 

3.5. Details of the Implementation 

3.5.1. Implementing Delayed-·write 

The delayed-write policy used by Sprite provides good writing performance but it 
complicates the implementation of the file system in two ways. First, since the server is 
not contacted on every write of data, disk space cannot be allocated for newly written 
data blocks. This means that, when the client eventually writes the new block back to 
the server (as much as 35 seconds later) there may be no disk space available; what is 
even worse is that the user process that wrote the data to the cache may have exited 
with the belief that the data that it generated is safe. This is handled in Sprite in a sim
ple manner: when it is detected on a delayed write that there is no disk space available, 
the user is informed of the situation (including the names of files that cannot be written 
back), and the delayed write will be tried again 30 seconds later. It is up to the user to 
free up enough space on disk to store the data that cannot be written back. 

Another complication from the delayed-write scheme is that, for up to 35 seconds 
after new data is written, the client, not the server, will know the current modify time 
for the file and the current file size. Likewise, since reads do not go through to the 
server, the client will also know the current access time for the file. This presents a 
problem if a client other than the one with the most up-to-date attributes tries to get the 
attributes of a file. Since in Sprite all attempts to get the attributes of a file must go 
through to the server of the file, the server can keep the attributes consistent. If the 
server detects that it does not have the most recent attributes for a file, it will retrieve 
the attributes from the client that does have the most recent attributes. This call-back 
mechanism is implemented in a similar way to that used for cache consistency 
explained above. 

3.5.2. Providing Reliability 

The design of the Sprite file system has emphasized performance, not reliability. 
We chose to use a 30-second delayed-write policy similar to the one that has been used 
successfully in many versions of Ul\TIX for the past 15 years. The use of the 30-second 
delayed-write policy introduces the possibility of data getting lost on a system crash: up 
to 35 seconds of data on a client crash, and up to 70 seconds on a server crash. In order 
to reduce the likelihood of data getting lost during a crash, the Sprite caching code has 
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been carefully vmtten, so that, when a machine crashes, there is a high probability that 
it can write its cache back to the server or to disk. This is done by ensuring that the 
cache write-back code only relies on either the RPC system or the disk sub-system to be 
functional; both of these are very stable and have no known bugs. 

Even though the cache can usually be written back on system crashes, there is still 
the possibility of lost data. In fact, because of the behavior of certain important pro
grams that manage files (e.g., source code control systems and editors), much more seri
ous damage can occur on a system crash. For example in the mx editor developed by 
John Ousterhout, whenever the file that is being edited is saved by the user, the editor 
truncates the file and rewrites it. The truncate command goes through to the file server 
so that disk space can be reclaimed, but the rewritten data does not for at least 30 
seconds. As a result, on a system crash the entire contents of the file, including data 
that could have been written in days past, can be lost. 

In order to provide higher reliability to those programs that require it (e.g., edi
tors), the file system provides a function, callable by user programs, that forces a file to 
be synchronously flushed from the client's cache to the server's disk. This function 
only provides a partial solution to the reliability problem, because a cnsh could occur 
between a file truncation operation and a forced write-back operation; the truncation 
will delete the file data and the new data may be lost during the crash. A common solu
tion used by many programs is to use temporary files and file move operations. A pro
gram that used this me:hod would first write data to a tempor2.!)' file, force the data to 
be written through to the server's disk, and then rename the temporary file so that it has 
the same name as the original file. In order for this to work safely, the file system pro
vides an atomic file rename operation with the semantics that either the original copy of 
the file exists or it has been replaced by the new copy of the file. 

The solutions that have been used in other file systems to provide a higher measure 
of relidbility than Sprite's are based on file versions [CaW86, SGN85] or atomic tran
sactions [BKT85, PoW85]. The systems that use file versions create a new version each 
time that a file is vnitten. Thus, files will never be destroyed as a result of client or 
server crashes, because old versions of files will remain safely on disk. We chose not to 
use the version mechanism so that we could stay compatible with the standard U~rrx 
paradigm for accessing files. 

Transaction systems guarantee that, when a file is rewritten, either the new version 
of the file will exist or the old version will exist, but the file's original contents will not 
be lost We did not implement transactions for two reasons. First, we did not feel that 
the application environment that we were targeting for required transactions. Second, 
transactions are inherently complex and potentially have a negative impact on perfor
mance. 

Although Sprite does not provide the same measure of reliability as some other 
systems, we are satisfied with its reliability. Data does still occasionally get lost during 
system crashes, but the system is becoming much more stable and, as a result, file data 
is rarely lost. We could have made the system more reliable by using transactions or 
file versions, but it would have resulted in a more complex and possibly less efficient 
implementation. The delayed-write policy used in Sprite is a compromise between 
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reliability and performance: it gives the best performance while giving reliability that is 
quite acceptable in our environment. 

3.5.3. Cache Consistency Implementation 

Although the Sprite cache consistency mechanism is simple in principle, there are 
several complexities in its implementation. One such complexity is synchronizing 
access to the per-file cache state information. In order to allow the server to detem1ine 
the consistency state for a file, the server maintains two pieces of state information for 
each file: a list of clients that are using the file and the client that was the last writer. 
The server does not need to maintain state information about clients that have closed a 
file and only have clean data in their cache; version number verification at file open 
time will keep these files consistent. Access to the consistency data structures must be 
serialized. For example, when a file is being opened, no other open of the file can occur 
until the file is brought to a consistent state, because another open could potentially 
change the cacheable state of the file. 

In order to allow files to be safely brought to a consistent state the file system has 
two types of locks for each file. One lock is called the I/0 lock and is used to ensure 
that only one read or write can occur to a file at one time; this lock is necessary to pro
tect certain kernel data structures associated with each file. The other lock is called the 
consistency lock and is used to synchronize access to the cache consistency data struc
tures. Two separate locks are required because the act of bringing a file to a consistent 
state may require that the server call back to clients to force them to write back their 
dirty data. Thus, while access to the cache consistency data structures for a file is being 
serialized, a write to the file must be able to occur. 

Another complexity in the Sprite cache consistency mechanism is performing the 
client call-backs when the cacheable state of a file changes. Inherent in any network 
implementation is the possibility that messages may arrive out of order. One possible 
way that this can happen is when messages get lost and have to be resent. This message 
ordering problem adds the potential of a race condition to the Sprite cache consistency 
algorithm (see Figure 3-3). When the open of a file by a client completes, the server 
sends back a reply to the client that indicates whether the file is cacheable or not. Once 
the reply is sent, an open by another client can occur on the file. If the second open 
makes the file change from cacheable to non-cacheable then the server will send ames
sage to the first client telling it not to cache the file after all. However, if the reply to 
the first open gets lost, then the server's message telling the client not to cache the file 
could be received before the reply from the open. Therefore if a client derives the 
cacheable state for a file from the most recent server message about the file, a client 
could erroneously believe that it can cache a file. 

This race condition is solved by introducing open time stamps (see Figure 3-4). 
Each time that a client opens a file, the server stores the time when the open occurred 
with the client state information it keeps with each file. This time stamp is also sent 
back to the client with the open reply, and clients keep the most recent time stamp with 
each file. When a server sends a cache consistency message for a file to a client, it 
includes the time of the most recent open of the file by that client. There are three 
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Client 1 Server Client 2 

O Open "fl" for reading 

Open reply: "fl" cacheable 

~ 
Message lost 

"fl" not cacheable 

0 
O Open "fl" for writing 

0---------------0 

0 

Open reply: "fl" not cacheable 

0 •0 
Open reply resend: "fl" cacheable 

0 0 
Figure 3-3. Open race condition. Client 1 opens file fl for reading. The server sends 
a reply to the open which indicates that the client can cache the file. However, the re
ply gets lost. Before the server detects that the reply got lost, client 2 opens file fl for 
writing. Since client 1 has the file open for reading, the server detects that concurrent 
write sharing is about to occur, tells client 1 that it can no longer cache the file, and re
plies to client 2. The server then resends the reply to the original open request made 
by client 1. If client 1 only pays attention to the last message from the server, then it 
will mistakenly think that it can cache file fl. 

possibilities when a client receives a consistency message. The most likely possibility 

is that the client and server time stamps are equal. In this case the client will process 

the message and inform the server when it has finished taking the necessary cache con

sistency actions. The second possibility is that the client's time stamp is greater than 

the server's time stamp. \Vhen this happens the client will drop the message because it 

realizes that the message pertains to an old open of the file. 

The final possibility is that the client's time stamp for the file is less than the 

server's time stamp; this is the race condition that the time stamps were designed to 

solve. When this occurs, the client realizes that the server is referring to an open for 

which the client has yet to receive the reply. The client will force the server to resend 

the message in the hope that the open reply will come in before the server is able to 

resend the cache consistency message (see Figure 3-4). The reason why the client 

forces the server to resend rather than queue up the message was done for to reduce the 

amount of state information to be maintained by the client. 

One final detail of the implementation is the management of the last writer infor

mation. Since Sprite uses a 30-second delayed-write policy, all of a file's blocks will be 

up-to-date in the server's cache within 35 seconds after the file is closed on the client. 
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Client 1 Server Client 2 

0 
Open "fl" for reading 
-~~----------~---+~0 

Open reply: "fl" cacheable, TS=l 

0 0 

0 
Open "fl" for reading 
-~~----------~----~~0 

Open reply: "fl" cacheable, TS=2 

~ 0 
Message lost O Open "fl" for writing 

0 
"fl" not cacheable, TS=2 

0 0 
Reply: Timestamp too big 

0 )0 

Open reply resend: "fl" cacheable, TS = 2 

0 0 
Retry: "fl" not cacheable, TS=2 

0 0 
Reply: Cache consistency done 

0 )0 
Open reply: "fl" not cacheable, TS=3 

0 0 
Figure 3-4. Solution to open race condition. The problem is solved with time stamps. 
Client 1 first opens file f1 for reading and gets back a time-stamp equal to 1. Oient 1 
then opens f1 again for reading, but this time the server's reply gets lost. Before the 
server detects that the reply got lost, Client 2 opens file fl for writing. The server 
detects that concurrent write sharing is about to occur and sends a cache consistency 
message to Client 1. However, by comparing time stamps Client 1 determines that the 
server is referring to an open that the client has not got the reply for yet. As a result 
the client tells the server that the time stamp that it gave was too large and it should try 
again. Meanwhile the server resends the reply to the latest open for Client 1. The 
server then resends the cache consistency message. This time the client has the same 
time stamp as the server. Once the server gets the successful reply from Client 1 it re
plies to the open from Oient 2. 
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There is no reason to maintain the last writer information when there are no more dirty 

blocks in the last writer's cache. This state information is cleaned up by having the 

client inform the server when it no longer has dirty blocks for a file; this can happen 

either when the file is closed or when the last dirty block is written back. This is not 

only an optimization, but is also a necessity in order to allow client workstations to 

clean up state information for files that are no longer cached. If a client deletes the state 

information about a closed file, it will not be able to handle cache consistency messages 
for the file; it will not know if a cache consistency message is for an open that has not 
yet completed or for an open that happened before the file state information was 

cleaned up. Thus, the client must ensure that the server knows that the client no longer 

has dirty blocks for a file before it deletes important state information. 

Unfortunately, there is a race condition when trying to detect that a client no 

longer has dirty blocks for a file. When a file is closed, the client must determine if it 

has dirty blocks for the file. If not, it includes with the close message an indication that 

it does not have any dirty blocks for the file. In addition, when a client writes back a 

dirty block (as part of a 30-second dealyed write) it must indicate to the server whether 

or not this is the last dirty block for the file. The race occurs between the delayed 

write-back and the close. Assume that when a file is closed there remains one dirty 

block. The client will inform the server in this case that it still has dirty blocks for the 

file. Now assume that, immediately after the close, the last block for the file is written 

back. On this operation, the client will inform the server that there are no more dirty 

blocks for the file. The problem occurs if the write-back message arrives before the 

close message. The server cannot believe the write-back message because it thinks that 

the file is still open on the client and that the client can still generate dirty blocks. How
ever, if the server ignores the write-back message, then it will lose the fact that there are 

really no more dirty blocks for the client. This problem is solved by synchronizing 

delayed write-backs and closes: while a file is being written-back, the file cannot be 

closed and vice versa. This guarantees that the messages will arrive in the right order. 

3.5.4. Crash Recovery 

One of the disadvantages of the Sprite caching mechanism is that servers must 

maintain a large amount of state information in their main memories. This includes 

both file data as well as information about which clients have open files. In order for 

clients to be allowed to continue after a server crashes and reboots, this state must be 

recoverable. In contrast, the servers in Sun's NFS are stateless. This results in less 

efficient operation (since all important information must continually be written through 

to disk), but it means that clients can recover from server crashes: the processes are put 

to sleep until the server reboots, then they continue with no ill effects. 

Sprite's approach is to recover from the most common cases and be able to detect 

when uncommon, non-recoverable cases occur. The server's state information about 

open files is recovered with help from the clients. The Sprite RPC system allows 

clients to determine when a server crashes and when a server reboots. When a client 

detects a server crash, it delays write-backs of dirty blocks to the server until it detects a 

reboot. When the server reboots, the client attempts to reopen all of its files and then 

writes back any dirty blocks that need to be written back to the server. 
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In all but two cases, a client will be able to reopen its files and continue normally. 
The first case is a race condition between clients reopening files and clients opening 
files; in some cases a cache consistency violation may occur. For example, assume that 
client Cl is caching file Fl for writing when the server crashes. Now if, when the 
server reboots, client Cl is unable to reopen Fl before some other client opens Fl, then 
a cache consistency violation will occur. If such a violation occurs, the reopen fails. 
The probability of these violations occurring is diminishec by having servers give 
clients time to reopen their files before accepting new opens for files. 

The second case where a client will not be able to reopen files is when the server 
lost dirty blocks that the client had written back. The current mechanism that is used to 
handle this case is to detect when the server is unable to write-back its data to disk on a 
crash. When the system reboots, if it was able to successfully write back its cache to 
disk when it crashed (the server marks its disk when it is able to successfully flush the 
cache), then clients are allowed to reopen files normally. Otherwise, all reopens for 
files on the disk are refused. As mentioned earlier, the file caching code is carefully 
written, so that, unless there is an error in the cache data structures or the disk sub
system, the server will be able to write its cache back to disk; based on current experi
ence with the system, the server very rarely fails while trying to write its cache to disk 
after a crash. 

The other option that can be used to allow the server to recover file data informa
tion after it reboots is to use a more secure writing policy. For example, if file servers 
used a write-through policy, then there would be no chance of data getting lost on a 
server crash. Chapter 5 looks into the performance impact of such a writing policy. 

3.6. Summary 

In this chapter I have presented the design of the Sprite file system. The file sys
tem has been designed for high performance and to maintain the ease of file sharing that 
was available in timesharing systems. In order to achieve this performance, Sprite pro
vides caching on both client and server machines. A 30-second delayed-write policy is 
used on both client and server machines in order to get the best writing performance. 
The file system guarantees workstations a consistent view of the file data, even when 
multiple workstations access the same file simultaneously and the file is cached in 
several places at once. This is done through a simple cache consistency mechanism 
that flushes portions of caches and disables caching for files undergoing read-write shar
ing. The result is that file access under Sprite has exactly the same semantics as if all of 
the processes on all of the workstations were executing on a single timesharing system. 

One of the disadvantages of the Sprite approach is that it is not as reliable as many 
other systems because we set performance as our primary goal. This introduced a few 
potential reliability problems, which we are solving as we encounter them. I am 
confident in our ability to provide an acceptable level of reliability. Efficient methods 
of providing better reliability by allowing programs to force data onto the server's disk 
will be discussed in Chapter 5. 

Although the file system must maintain state information in order to provide cache 
consistency, it is designed to gracefully recover from most client and server crashes. 
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The recovery mechanism is designed so that full recovery is possible m the normal 
case, but certain rare cases may not be recoverable. The mechanism is simple, yet 
should work in most case~. 
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CHAPTER 4 

File System Performance 

4.1. Introduction 

This chapter presents performance measurements of the benefits of client data 
caching. The measurements were made by running a series of file-intensive benchmark 
programs against the Sprite file system. The goal was to measure the benefits provided 
by client caches in reducing delays and contention: 

• How much more quickly can file-intensive programs execute with client caches than 
without? 

• How much do client caches reduce the load placed on server CPU s? 

• How much do client caches reduce the network load? 

• How many clients can one server or network support? 

• How will the benefits of client caches change as CPU speeds and memory sizes 
increase? 

All of the measurements were made on configurations of Sun-3 workstations (about 2 
l'vUPS processing power). Clients were Sun-3n5's and Sun-3/160's with at least 8 
Mbytes of memory, and the server was a Sun-3/180 with 16 Mbytes of memory and a 
400-Mbyte Fujitsu Eagle disk. 

4.2. Micro-benchmarks 

I wrote several simple benchmarks to measure the low-level performance of the 
Sprite file system. The first set of benchmarks measured the time required for local and 
remote invocation of four common file lookup operations (see Table 4-1). The remote 
versions took 3-6 times as long as the local versions; about half of the elapsed time for 
the remote operations was spent executing in the server's CPU. The second set of 
benchmarks measured the raw read and write performance of the Sprite file system by 
reading or v.rriting a single large file sequentially. Before running the programs, I 
rigged the system so that all the accesses would be satisfied in a particular place (e.g. 
the client's cache). Table 4-2 shows the I/0 speeds achieved to and from caches and 
disks in different locations. 

Table 4-2 contains two important results. First, a client can access bytes in its own 
cache 7-8 times faster than those in the server's cache. This means that, in the best 
case, client caching could permit an application program to run as much as 7-8 times 
faster than it could without client caching. The second important result is that a client 
can read and write the server's cache at about the same speed as a local disk. In the 
current implementation the server cache is twice as fast as a local disk, but this is 
because Sprite's disk :ayout policy only allows one block to be read or written per disk 



File Lookup Operations 

Operation Local Disk 
Diskless 

Elapsed Time Server CPU Time 

Open/Close 3.30ms 10.06ms 5.34ms 

Failed Open 1.30ms 4.15ms 2.08ms 

Get A ttri bu tes l.lOms 4.32ms 2.2lms 

Get Attributes ID 0.54ms 3.63ms 1.71ms 

Table 4-1. Cost of four common file lookup operations in Sprite. Each of these opera
tions requires contacting the server of the given file. Times are milliseconds per opera
tion on a pathname with a single component. The first row is the cost of opening and 
closing a file, the second row is the cost of opening a file that docs not exist, the third 
row is the cost of getting the attributes of a file ("stat"), and the fourth row is the cost 
of getting the attributes of a file that is already open. 
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revolution. We expect eventually to achieve throughput to local disk at least as good as 

4.3BSD's, or about 2-3 times the rates listed in Table 4-2; under these conditions, the 

local disk will have about the same throughput as the server's cache. In the future, as 

CPUs get much faster but disks do not, the server's cache should become much faster 

than a local disk, up to the limits of network bandwidth. For example, if the clients and 

servers were 8-MIPS Sun-4s instead of 2-MIPS Sun-3s, then a client should be able to 

read the server's cache up to 4 times as fast as a local disk. Even for paging traffic, this 
suggests that a large server cache may provide better performance than a local disk. 

4.3. Macro-benchmarks 

The micro-benchmarks discussed in the previous section give an upper limit on the 

costs of remote file access and the possible benefits of client caching. To see how much 

these costs and benefits affect real applications, I ported several well-known programs 

from U:t\TIX to Sprite and measured them under varying conditions. I ran each bench

mark three times for each data point measured and took the average of the three runs. 

Table 4-3 describes the benchmark programs. See Appendix A for detailed tables with 

the results of running the 5 benchmarks including standard deviations. 

Read & Write Throm~:hput, Kbvtes/second 

Local Cache Server Cache Local Disk Server Disk 

Read 3357 470 222 207 

Write 2786 368 200 178 

Table 4-2. Maximum rates at which programs can read and write ftle data in various 
places, using large files accessed sequentially. 



Program Description 
I/0 (Kbvtes/sec) 
Read Write 

Andrew Copy a directory hierarchy containing 70 58.0 36.5 
files and 200 Kbytes of data; examine the 
status of every file in the new subtree; read 
every byte of the files; compile and link 
the files. Developed by M. Satyanarayanan 
for benchmarking the Andrew file system; 
see fHow88] for details. 

Vm-make Use the "make" program to recompile 42.3 25.9 
the Sprite virtual memory system: 14 source files, 
12600 lines of C source code. 

Sort Sort a 1-Mbvte file. 46.4 89.9 

Diff Compare 2 identical 1-Mbvte files. 452.2 4.3 

Ditroff Format a paper which contains both figures and 7.0 10.4 

tables. The input file contains 56 Kbytes of 
data. 

Table 4-3. Macro-benchmarks. The I/0 columns give the average rates at which file 
data were read and written by the benchmark when run on Sun-3 's with local disks and 
warm caches; they measure the benchmark's I/0 intensity. 

4.3.1. Application Speedups 
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Table 4-4 lists the total elapsed time to execute each of the macro-benchmarks 

with local or remote disks and with client caches enabled or disabled. Without client 

caching, diskless machines were about 10-20% slower than those with disks; one 

benchmark, Diff, was actually 85% slower on diskless machines than on machines with 

disks. With client caching enabled and a warm start (caches already loaded by a previ

ous run of the program), the difference between diskless machines and those with disks 

was very small; in the worst case, it was only about 8%. Figure 4-1(a) shows how the 

performance varied with the size of the client cache. 

4.3.1.1. Server Load 

One of the most beneficial effects of client caching is its reduction in the load 

placed on server CPUs. Figure 4-2 shows the server CPU utilization with and without 

client caching. In general, a diskless client without a client cache utilized about 5-27% 

of the server's CPU. \Vith client cachinf. the server utilization dropped by a factor of 

1.5 or more, to 1.5-12%. 

4.3.1.2. Network Utilization 

In their analysis of diskless file access, based on Sun-2 workstations, Lazowska et 

a!. concluded that network loading was not yet a major factor in network file systems 



Local Disk, Diskless, Diskless, 

Benchmark with Cache Server Cache Onlv Client & Server Caches 

Cold Warm Cold Wam1 Cold Warm 

Andrew 
265 255 321 307 288 275 

104% 100% 126% 120% 113% 108% 

Vm-make 
284 277 337 330 305 296 

103% 100% 122% 119% 110% 107% 

Sort 
64 60 75 71 65 59 

107% 100% 125% 118% 108% 98% 
21 4.6 ")- 8.5 ")- 4.5 

Diff 
~) ~) 

457% 100% 543% 185% 543% 98% 

Ditroff 
128 125 133 131 128 125 

102% 100% 106% 105% 102% 100% 

Table 4-4. Execution times with and without local disks and caching, measured on 
Sun-3 's. The top number for each run is total elapsed time in seconds. The bottom 
number is normalized relative to the warm-start time with a local disk. "Cold" means 
that all caches, both on server a:1d client, were empty at the beginning of the run. 
"Warm" means that the program was run once to load the caches, then timed on a 
second run. In the "Diskless, Server Cache Only" case, the client cache was disabled 
but the server cache was still enabled. In all other cases, caches were enabled on all 
machines. All caches were allowed to vary in size using the VM-FS negotiation 
scheme described in Chapter 6. 
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Figure 4-1. Oient degradation and network traffic (diskless Sun-3's with client 
caches, warm start) as a function of maximum client cache size. For each point, the 
maximum size of the client cache was limited to a particular value. The "degradation" 
shown in (a) is relative to the time required to execute the benchmark with a local disk 
and a 4-Mbyte warm cache. The diff benchmark did not fit on graph (a); for all cache 
sizes less than 2 Mbytes it has a degradation of 85% and for all larger cache sizes it has 
no degradation. The network traffic shown in (b) includes bytes transmitted in packet 
headers and control packets, as well as file data. The diff benchmark did not fit on 
graph (b) either; for all cache sizes less than 2 }..1bytes it has an I/0 rate of 260 
Kbytes/second and for all larger cache sizes it has an I/0 rate of only 1.3 
Kbytes/second. 
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Figure 4-2. Client caching reduces server loading by at least a factor of 1.5-3 (meas
ured on Sun-3 's with variable-size client caches). 
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[LZC86]. However, as CPU speeds increase, the network bandwidth is becoming more 
and more of an issue. Figure 4-1 (b) plots network traffic as a function of cache size for 

the benchmarks running on Sun-3's. Without client caching the benchmarks averaged 

7.8% utilization of the 10-Mbit/second Ethernet. The most intensive application, diff, 

used 20% of the network bandwidth for a single client; the other 4 benchmarks aver

aged 4.65% of the 10-Mbit/second Ethernet. Machines at least five times faster than 

Sun-3's are already available (e.g., Sun-4 workstations); a single one of these machines 

would utilize 25-100% of the Ethernet bandwidth running the benchmarks without 

client caching. Without client caches, application performance may become limited by 
network transmission delays, and the number of workstations on a single Ethernet may 
be limited by the bandwidth available on the network. 

Fortunately, Figure 4-1 (b) shows that client caching reduces network utilization by 

a factor of 4-10, to an average of about 0.66% for the benchmarks. The most I/O

intensive benchmark, Son uses only 2.6% of the ethernet bandwidth. This suggests that 

10-Mbit Ethernets will be adequate for the new 10-MIPS generation of CPUs, and 

perhaps one more generation to follow. After that, higher-performance networks will 
become essential. 

Ricardo Gusella in an analysis of diskless workstation Ethernet traffic also noticed 
that Ethernets are becoming heavily loaded with the in~roduction of faster machines 



40 

[Gus87]. He measured the traffic on a 10-Mbit Ethernet over a 24 hour period. He 

determined that two Sun-3 workstations (a Sun-3/180 server and a Sun-3/50 client each 

with 4 Mbytes of memory) running U.t\TJX with Sun's Ketwork File System (NFS) 

[San85] can utilize over 20% of the Ethernet. Since the workstations that Gusella 

measured had smaller memories than the Sprite workstations and NFS does not utilize 

file data caches as effectively as Sprite, I would not expect Sprite to exhibit the same 

loads that were measured by Gusella. However, Gusella' s measurements are another 
indication that higher-performance networks will be necessary in the near future. 

4.3.1.3. Disk Utilization 

Figure 4-3 shows the disk utilizations of the benchmarks. For most of the bench

marks, the disk utilization with a warm cache is less than 6% with or without client 

caching. This shows that, for most of the benchmarks, a cache on the server is able to 

reduce the disk traffic to reasonable levels. 

Son is the one benchmark that has a fairly high disk utilization without client 

caching; with client caching the disk utilization is cut in half. This demonstrates the 
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Figure 4-3. Client caching reduces disk utilization by up to a factor of 2 (measured on 
Sun-3 's with variable-size client caches). 
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advantage of the 30-second delayed write policy. The Sort benchmark completes in 
around 60 seconds. When client caching is used, all v.rrites to disk will be delayed by 
30 seconds on the client and 30 seconds on the server. Thus, only the final result will 

end up getting written to disk. Without client caching modified data will only be 

delayed by 30 seconds; any intermediate files that live longer than 30 seconds will get 
written through to disk. If the server were changed to use a 60 second delayed-write 

policy, then many of the extra disk writes without client caching would be eliminated. 

With warm caches the disk utilization of these benchmarks is up to a factor of two 
lower than the CPU utilization. The disk utilization would be even lower if Sprite did a 

better job of utilizing the disk bandwidth; currently only one block can be transferred 
per disk revolution. Therefore, currently the CPU should saturate before the disk. 
However, as CPUs get much faster and disks do not, the disk may become the 
bottleneck that will limit system scalability. 

4.3.1.4. Contention 

In order to measure the effects of loading on the performance of the Sprite file sys

tem, I ran several versions of the most server-intensive benchmark, Andrew, 

Andrew Contention Results 

Number I Elapsed Time Network Mbytes Server Uti! I Disk I/Os ! Disk Util 

of No With No With I No With No With No With 

Clients 
Client Client Client Client I Client Client Client Client Client Client 
Cache Cache Cache Cache Cache Cache Cache Cache Cache Cache 

1 I 
307 275 23.8 4.3 18.0% 12.1% 

I 
863 647 

I 
6.0% 

I 
5.0% 

6.1 0.0 0.0 0.0 0.1 0.0 359.8 1.7 1.7 0.0 

2 I 
324 

I 
275 

I 
47.7 8.6 34.6% 21.8% 

I 
1397 1141 12.0% 11.3% I 

2.6 0.4 0.6 0.0 0.1 0.1 190.0 2.1 1.7 0.6 

3 II 
353 

I 
286 71.7 

I 
12.9 

I 
48.1% 

I 
31.2% 

I 
2401 

I 
1644 

I 
19.3% 

I 
15.3% 

3.5 1.7 0.6 0.0 0.5 0.1 192.5 12.5 0.6 0.6 

5 II 
450 

I 
321 120.3 21.6 

I 
65.7% 45.0% 

I 
4369 

I 
2742 30.2% 

I 
23.3% 

2.3 9.7 0.5 0.0 0.1 0.4 92.6 28.5 0.4 1.2 

7 II 
519 

I 
372 168.8 

I 
30.2 I 74.3% 5.S.2% 

I 
6146 

I 
3843 

I 
38.0% 

I 
30.7% 

:2.2 8.3 0.6 0.0 I 2.3 0.3 407.6 48.4 2.0 0.6 

10 
753 

I 
456 245.9 44.0 

I 
83.3% 

I 
70.8% I 9935 

I 
5659 

I 
50.7% 

I 
42.7% 

3.3 15.3 0.6 0.6 0.3 0.1 I 64.1 234.9 0.6 2.1 

Table 4-5. Andrew contention results. Each row contains two lines of data. The first 
line contains the results of running the benchmarks and the second line contains the 
standard deviations. Each row of the table is for a different number of clients running 
the Andrew benchmark at the same time against a single server. Each of the five 
columns of results are divided into the result when the benchmark was run without 
client caching and the result with client caching. The five columns show, in the fol
lowing order, average elapsed time to execute the benchmark in seconds, network 
bytes transferred in megabytes, server utilization, number of disk reads and writes and 
disk utilization. 
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simultaneously on different clients. Each client used a different copy of the input and 

output files, so there was no cache consistency overhead. I ran each contention bench
mark three times for each d:lta point measured and took the average of the three runs. 

Table 4-5 and Figure 4-4 show the effects of contention on the client speed, on the 

server's CPU, and on the network. Without client caches, there was significant perfor

mance degradation when more than a few clients were active at once. With five clients 
and no client caching, the clients were executing 80% more slowly, the server was 

nearly 70% utilized, the network was over 20% utilized, and the disk was 30% utilized. 

With client caching and five active clients, each ran at a speed within 25% of what it 

could have achieved with a local disk; server utilization in this situation was about 
45%, network utilization was only 5% and disk utilization was 23%. Basically, client 

caching allows servers to support twice as many clients and networks to support at least 
4 times as many clients. 

The measurements of Figure 4-4 suggest that client caches allow a single Sun-3 

server to support 5-7 Sun-3 clients simultaneously running the Andrew benchmark. 
However, typical users spend only a small fraction of their time running such intensive 

programs. I estimate that one instance of the Andrew benchmark corresponds to about 

5-20 active users, so that one Sun-3 Sprite file server should be able to support at least 

30 Sun-3 users. This estimate is based on the study of UNIX done by Ousterhout et af. 

[Ous85], which reported average file VO rates per active user of 0.5-1. 8 Kbytes/second. 
I estimate that the average total VO for an active Sun-3 workstation user will be about 

8-10 times higher than this, or about 4-18 Kbytes/second, because Ousterhout's study 
did not include paging traffic and was based on slower machines used in a timesharing 
mode (I estimate that each of these factors accounts for about a factor of two). Since 

the average VO rate for the Andrew benchmark was 90 Kbytes/second, it corresponds to 

about 5-10 users. This estimate is consistent with independent estimates made by 

Howard et af., who estimated that one instance of the Andrew benchmark corresponds 
to five average users [How88], and by Lazowska et al., who estimated about 4 

Kbytes/second of VO per user on slower Sun-2 workstations [LZC86]. 

The server capacity should not change much with increasing CPU speeds, as long 
as both client and server CPU speeds increase at about the same rate. In a system with 

servers that are more powerful than clients, the server capacity should be even higher 
than this. 

4.4. Advantage of Local Name Caching 

Although I am generally satisfied with Sprite's performance and scalability, I have 

estimated how much improvement would be possible if we implemented client-level 

name caching with an Andrew-like callback mechanism. Table 4-6 contains simple 

upper-bound estimates. The table suggests that client-visible performance would only 

improve by a few percent (even now, clients run almost as fast with remote disks as 

with local ones), but server utilization and network utilization would be reduced by as 

much as a factor of 1. This could potentially allow a single server or network to sup

port up to twice the number of clients that the current implementation supports. Thus, 

in terms of CPU utilization, client name caching \vould provide about the same 
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Figure 4-4. Effect of multiple diskless clients running the Andrew benchmark simul

taneously on different files in a Sun-3 configuration with variable-size client caches. 

(a) shows additional time required by each diskless client to complete the benchmark, 

relative to a single client running with local disk. (b) shows seJVer CPU utilization. 

(c) shows percent network utilization. (d) shows disk utilization. 
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improvement as client data caching. 

My estimate for improvement in Sprite is much smaller than the measured 
improvement in Andrew when they switched to callback. I suspect that this is because 
the Andrew servers are implemented as user-level processes, which made the system 
more portable, but also made remote operations much more expensive than in Sprite's 

kernel-level implementation. If the Andrew servers had been implemented in the ker
nel, I suspect that there would have been less motivation to switch to a callback 

approach. 

4.5. Comparison to Other Systems 

Figure 4-5 compares Sprite to the Andrew and NFS filesystems using the Andrew 
benchmark. The measurements for the NFS and Andrew file systems were obtained 
from [How88]. Unfortunately, the measurements in [How88] were taken using Sun-

3/50 clients, whereas I had only Sun-3n5 clients available for the Sprite measurements; 
the Sun-3n5 is about 30% faster than the Sun-3/50. In order to make the systems com

parable, I re-normalized the Sprite numbers for S un-3/50 clients: the Sprite elapsed 
times from Table 4-5 were multiplied by 1.3, and the server utilizations from Table 4-5 

were divided by 1.3 (the servers were the same for the Sprite measurements as for the 
Andrew and 1'-;'FS measurements; slowing down the Sprite clients would cause the 
server to do the same amount of work over a longer time period, for lower average utili

zation). Another difference between my measurements and the ones in [How88] is that 

the 1\TfS and Andrew measurements were made using local disks for program binaries, 

paging, and temporary files. For Sprite, all of this information was accessed remotely 

from the server. 

Figure 4-5 shows that for a single client Sprite is about 30% faster than 1\TfS and 

about 35% faster than Andrew. The systems are sufficiently different that it is hard to 

pinpoint a single reason for Sprite's better performance; however, I suspect that 
Sprite's high-performance kernel-to-kernel RPC mechanism (vs. more general-purpose 

but slower mechanisms used in NFS and Andrew), Sprite's delayed writes, and Sprite's 

De £radation Server Utilization I Network Utilization 

Original 
Handle 

I 
Handle I 

Original Locall v I 
Handle 

Original Locallv 
Benchmark 

Locallv 

Andrew 7.8% 0.0% 12.1% i 6.3% I 1.24% I 0.67% 

Vm-make 6.7% 0.5% 6.7% I 4.7% i 0.16% I o.359c 

Table 4-6. Estimated improvements possible from client-level name caching and 
server callback. The estimates were made by counting invocations of Open and Get 
Attributes operations in the benchmarks and recalculating degradations and utilizations 
under the assumption that all of these operations could be executed by clients without 
any network traffic or server involvement. 



E 
I 

p 

e 
d 

T 

m 
e 

900 -------------------------------------------················_;.~-

~FS -" 
/ 

800 -------------------------------------------·····;;-/'.. ....... . 

/ 
700 --------------······················r······················· 

/ 

Andrew 
/ 

(fJ() ---------------------...----------------------------

_1""' ..... -
500 --- .:r. ... ------------------------ ................ : -------------

---~ 

400 -------------------------""-~-----------~r-~:~-----------· 
+---+---+"·-· 

300 -------------------------------------------------------------

200 -------------------------------------------------------------

100 -------------------------------------------------------------

o+-~~--r-~~~~~~~~ 

0 2 3 4 5 6 7 8 9 10 

Number of Oients 

(a) 

s 

v 
e 

z 
a 
l 

0 

n 

45 

!00% ---------------------------------------------------------------
l\FS 

90o/o · ··•·· · ··---- · · • -- •• •• ••• •••• · ••••••· •••• · · ------.-- ••.. :;. -~- -~ 

--80% --------------------------------------.---,....-. ... ---------------

70% 

60% 

50% 

40% 

30% 

/ 

/ -------------------------------..,-------------------------------
/ 

/ 
-----------------------··r····--------------------------------· 

/ Sprite 
I .,.. ...... 

-------------------,--------------------------------:,.... .. :-:: ..... 
/ .,..,.,.._...--

/ / 

-----------7·----------------··:;_·:r·····-------------------· 
I -"~ 

........ ./. ....... -------/-~-----------····-------------···---· 
1 / Andrew 

+ / 20% ______________ .,._________________________________ ----------· 

/ 
/ 

10% ..... ..,: ................ . 

0%+-~~--~-r~~~~--~~~ 

0 2 3 4 5 6 7 8 9 10 

!\umber of Oients 

(b) 

Figure 4-5. Performance of the Andrew benchmark on three different file systems; 
Sprite, Andrew, and .1\TfS. (a) shows the absolute running time of the benchmark as a 
function of the number of clients executing the benchmark simultaneously, and (b) 

shows the server CPU utilization as a function of number of clients. The Andrew and 
NFS numbers were taken from [How88] and are based Sun-3/50 clients. The Sprite 
numbers were taken from Table 4-5 andre-normalized for Sun-3/50 clients. 

kernel implementation (vs. Andrew's user-level implementation) are major factors. As 

the number of concurrent clients increased, the NFS server quickly saturated. The 

Andrew system showed the greatest scalability: each client accounted for only about 

2.4% server CPU utilization, vs. 7.5% in Sprite and 20% in 1\TfS. I attribute Andrew's 

low server CPU utilization to its use of callbacks. Figure 4-5 reinforces my claim that a 

Sprite file server should be able to support at least 30 clients: our experience with 1\rS 
is that a single server can support 10-15 clients, and Sprite's server utilization is only 

one-third that of NFS. 

4.6. Summary 

In this chapter I presented detailed measurements of the performance of client 

caching. On average, client caching resulted in a speedup of about 10-20% for pro

grams running on diskless workstations, relative to diskless workstations without client 

caches. \Vith client caching enabled, diskless workstations completed the benchmarks 

only 0-8% more slowly than workstations with disks. Client caches reduced the server 

utilization from about 5-27% per active client to about 1-12% per active client. Since 

normal users are rarely active, my measurements suggest that a single server should be 

able to support at least 30 clients. 
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In addition to measuring the absolute performance of Sprite, I also compared the 

performance of the Sprite file system, the Andrew file system [Sat85], and Sun's Net

work File System [San85] for a particular file-intensive benchmark. I showed that 

Sprite completes the benchmark 30-35% faster than the other systems. Sprite's server 

utilization was one-third of NFS 's utilization but three times Andrew's utilization. 
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CHAPTER 5 

\Vriting Policies 

5.1. Introduction 

The policy that is used to handle data after it has been written impacts perfor

mance, reliability and the cache consistency mechanism; the writing policies on both 

the server and the client are important. In the implementation of Sprite that I described 

in the previous chapters the 30-second delayed write policy was used on both clients 

and servers. This allows Sprite to attain high performance, but it potentially reduces its 

reliability and complicates its cache consistency mechanism. This chapter focuses on 

the performance-reliability tradeoff: are there writing policies that provide both high 

performance and high reliability? 

All of the previous work on the impact of the writing policy has been done by 

using traces of UNIX timesharing systems. In addition, there have been no analyses of 

the trade-offs between the client writing policy and the server policy; previous work has 

concentrated on analyzing either the server policy or the client writing policy, but not 

both. In this chapter, I will explore the impact of the writing policy by measuring the 

results of running benchmarks against the Sprite file system. This will include an 

analysis of numerous writing policies on clients and several policies for the server. The 

measurements will answer the following questions: 

• What is the impact of the client writing policy on client performance and the 

amount of network traffic? 

• What effect does the server writing policy have on the amount of disk traffic, on 

the utilization of the server's CPU, and on the performance of client workstations? 

• Does the impact of the server policy differ depending on which policy the client 

uses? 

• Does the impact of the client policy differ depending on which policy the server 

uses? 

The client writing policies that I will analyze are shown in Table 5-l. These 

include the policies used by all file systems I know, and they cover the whole range of 

the performance-reliability tradeoff: from write-through to delayed-write. In addition, 

policies that treat temporary files specially are included, in order to determine whether 

delaying temporary files will allow higher reliability for most files while still providing 

good performance. 

The server policies are shown in Table 5-2. Delay-30 and write-through (WT) are 

the ones that are most commonly implemented on currently existing file servers. The 

other two policies, as-soon-as-possible (ASAP) and last-dirty-block (LDB), have been 

included as alternatives that provide higher reliability than delay-30 but with higher 
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Policv I Descri _Qtion 

Write-through (WT) A write call does not return until the data has 
been written to the server's cache. 

Write-back-on-close (WBOC) Write calls return as soon as data has been 
written to the client's cache, but a close call 
will not return until all of the modified 
data has been written to the server's cache. 

As-soon-as-possible (ASAP) Write calls return as soon as data has been 
written to the client's cache but the data is 
scheduled to be written back to the server's 
cache when either a block is full or the file 
is closed. 

WBOC+ASAP Combination of write-back-on-close and 
as- soon-as-possible. 

Full Delay (full-delay) Write calls return as soon as data has been 
written to the client's cache and blocks are 
not written back unless they are ejected 
from the cache. 

30 Second Delay (delay-30) Like full-delay except that every 5 seconds the 
cache is scanned and dirty blocks that have not 
been modified in at least 30 seconds are written 
back. 

WT +delay /tmp files (\VT-TMP) Use full-delay policy for all files in the /tmp 
directorv and write-through for all other files. 

WB OC + TtvlP (WB OC-TMP) Use full delay policy for all files in the /tmp 
directory and WBOC for all other files. 

ASAP+ TJ\1P (ASAP-TJ\1P) Use full delay policy for all files in the /tmp 
directorv and ASAP for all other files. 

Table 5-1. Oient writing policies. Each of these policies represents the action that the 
file system takes when an application program issues a write system call or a close 
call. 

performance than WT. In particular, with the cooperation of clients, the LDB policy 
can provide nearly the same reliability as WT. If clients do not remove any blocks 
from their cache until the last dirty block for a file has been written back to the server, 
then the LOB and WT policies will provide nearly the same server reliability. 

Table 5-3 describes the benchmarks that I used to measure the impact of the writ
ing policy. These benchmarks were chosen because, of all of the benchmarks given in 
the previous chapter, they are the only ones that generate a large amount of write traffic. 
All of the measurements were made on configurations of Sun-3 workstations. The 
client was a Sun-3n5 with 16 Mbytes of memory and the server was a Sun-3/180 with 
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Policv Description 

30 Second Delay (delay-30) The client RPC returns immediately after the data 
has been loaded into the cache. Data blocks, 

indirect blocks and file descriptors are not 
written back until either they are ejected from 
the cache or they are dirty and they have not 
been modified for at least 30 seconds. 

Write-through (WT) The client RPC does not return until the data, any 
modified indirect blocks, and the file descriptor 
have been written to the server's disk. 

As-soon-as-possible (ASAP) The client RPC returns immediately after the data 
has been loaded into the cache but the data, the 
file descriptor and dirty indirect blocks are all 
scheduled to be written to disk as soon as possible. 

Last Dirty Block (LDB) All client writes return immediately except for the 

one that contains the last dirty block for the file. 

The write that contains the file's last dirty block 
will not return until all dirty data blocks, dirty 
indirect blocks and the file descriptor have been 
v-:ritten to disk. This policy is used in conjunction 

with the delav-30 _ll_olicv on the server. 

Table 5-2. Server writing policies. Each of these policies represents the action that the 
file system takes when a client delivers dirty data to the server via a remote procedure 
call (RPC). 

16 Mbytes of memory and 400-Mbyte Fujitsu Eagle disk. Both the client and server 

caches were 8 Mbytes, which were large enough to hold the entire input and output of 

each benchmark; thus, blocks were never written back during the execution of the 

benchmark unless the writing policy explicitly forced the block to be written back. 

However, both the client and server caches were written back at the end of each bench

mark. This was done to capture the number of useful bytes of data generated by the 

benchmarks, but was not included in the measured elapsed time. 

The rest of this chapter is organized as follows: Section 5.2 measures the impact of 

the client writing policy on network load; Sections 5.3, 5.4, and 5.5 analyze the impact 

of the server and client writing policies on disk traffic, server utilization and client per

formance, respectively. 

5.2. Network Load 

The load placed on the network by clients depends only on the client writing pol

icy; the policy used on the server does not matter. Table 5-4 gives the number of 

Kbytes placed on the network by each of the three benchmarks for each of the 9 client 



Program Description 
I/0 (Kbvtes/sec) 
Read Write 

Andrew Copy a directory hierarchy containing 70 58.0 36.5 
files and 200 Kbytes of data; examine the 
status of every file in the new subtre~; read 
every byte of the files; compile and link 
the files. Developed by M. Satyanarayanan 
for benchmarking the Andrew file system; 
see [How88] for details. 

Ym-make Use the "make" program to recompile 42.3 25.9 
the Sprite virtual memory system: 15 source files, 
11,250 lines of C source code. 

Sort Sort a 1-Mbvte file. 46.4 89.9 

Table 5-3. Benchmarks. The I/0 columns give the average rates at which file data 
were read and written by the benchmark when run on Sun-3 's with no disks and warm 
caches and the highest performance writing policy; they measure the benchmark's l/0 
intensity. 
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writing policies. As expected, the full-delay policy gives the lowest network load for 
all benchmarks. Figure 5-1 shows the relative differences between the full-delay policy 
and the other policies. 

Figure 5-1 shows that all four of the non-delay policies require significantly more 
bytes transferred (between 40 and 150 percent) than the full-delay policy. Which non
delayed-write policy is used does not matter because each of the 4 policies transfers 
approximately the same number of bytes. Since the ASAP, WBOC and WBOC-ASAP 
policies only transfer file system blocks after they have either filled with data or the file 
is closed, these policies should transfer the same number of bytes. However, the WT 
policy sends data to the server as soon as it is written into the client's cache; if the 
benchmarks write data in pieces smaller than the file system block size, the \VT policy 
will require more network transfers than the other policies. Fortunately, the packet 
header overhead per network write is very small (less than 80 bytes). Since the bench
marks rarely write less than 1024 bytes to the cache at a time, the packet overhead is 
less than 8 percent. Thus, the variations in network bytes transferred between the 4 
non-delayed-write policies should be very small. 

It is interesting to note that the ASAP and WBOC-ASAP client policies actually 
transfer more bytes than either WBOC or WT for both the Andrew and Vm-make 
benchmarks. I believe that this may be because of packet retransmissions by the RPC 
system. As I explained in Chapter 4, there are several block cleaners in the kernel, but 
there is only one block cleaner writing back a file at any one time. Since each of the 
benchmarks only has one process executing at a time, they can only be writing and 
closing one file at a time. This means that, when the WT and \VBOC policies are used, 



I\etwork Khvtes vs. Client Policv 

Client 
Andrew Vm-make 

I 
Sort 

I 

Policv Read Write Total Read Write Total Read Write Total 

WT I 
1413 4853 6266 965 3676 4641 

I 
114 2989 3103 

1.07 1.62 1.45 1.06 1.87 1.61 1.46 2.63 2.56 

WBOC 
1348 4783 6131 935 3652 4588 

I 
114 2989 3103 

1.02 1.60 1.42 1.03 1.86 1.60 1.46 2.63 2.56 

1360 4933 6293 951 3831 4781 
,, 

114 
I 

2989 3103 
ASAP II 

1.03 1.65 1.46 1.05 1.95 1.66 II 1.46 2.63 2.56 

WBOC-ASAP 
1361 4960 6321 I 951 3837 4788 114 2989 3103 
1.03 1.66 1.46 I 1.05 1.95 1.66 1.46 2.63 2.56 

1323 3063 4386 
II 

909 1976 2885 I 88 1637 1725 
dclay-30 I 

1.00 1.02 1.02 1.00 1.00 1.00 1.12 1.44 1.42 

full-delay I 
1321 2994 4315 I 908 1968 2876 78 1135 1213 
1.00 1.00 1.00 I 1.00 1.00 1.00 1.00 1.00 1.00 

\VT-T~ I 
1387 3516 4903 938 2018 2956 77 1133 1211 
1.05 1.17 1.14 1.03 1.03 1.03 .I 0.99 1.00 1.00 

WBOC-T~ 
1330 3457 4787 908 1989 2897 78 1133 1211 
1.01 1.15 1.11 1.00 1.01 1.01 0.99 1.00 1.00 

ASAP-~ 
1342 3621 4962 924 2174 I 3098 "77 1133 1210 

1.02 1.21 1.15 1.02 1.10 1.08 0.99 1.00 1.00 

Table 5-4. Network Kbytes vs. Client Policy. This table shows the amount of net
work traffic for each of the three benchmarks with each of the different client writing 
policies. The top line for each policy is the raw number of Kbytes transferred. The 
bottom line is the bytes transferred for the policy divided by the number of bytes 
transferred with the full-delay policy. Note that the reason why there are bytes 
transferred with the full-delay policy is that the client cache is written back at the end 
of each benchmark. 
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Figure 5-l. Ratio of number of network bytes transferred with each of the client poli
cies to the number of bytes transferred with a full-delay policy. A ratio of 1.0 
corresponds to the given client policy transferring the same number of bytes as the 
full-delay policy. 

there can only be one file being written to the server at any given time. The ASAP poli
cies on the other hand do asynchronous write-backs and can therefore have multiple 
files being written back at once. For this reason the ASAP policies will be interacting 
more intensely with the server; this may result in contention on the server, which may 
cause the RPC system to time-out and retransmit packets. 

The delay-30 policy eliminates nearly all of the extra network writes caused by the 
4 non-delayed-write policies. For the Andrew and Vm-make benchmarks, the delay-30 
policy requires only 2% more bytes transferred than full-delay; this implies that nearly 
all of the temporary files that were used during these two benchmarks were deleted 
within 30 seconds of their creation. For the Sort benchmark the delay-30 policy 
requires 40% more bytes transferred than full-delay, because some of the temporary 
files do in fact live longer than 30 seconds. However, delay-30 still only transfers 2/3 
of the bytes transferred by the 4 non-delayed-write policies. Thus, the delay-30 policy 
gives higher reliability than full-delay while requiring little overhead in terms of net
work bytes transferred. 

The use of a full-delay policy on temporary files also is very effective in eliminat
ing the extra network writes caused by the 4 non-delayed-write policies. This is espe
cially true of the Sort benchmark, which writes all of its data to temporary files except 
for the final result; delaying temporary files eliminates all network transfers except for 
the ones required to write back the final result. 
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5.3. Disk Traffic 

The amount of traffic to disk required to execute client programs limits the number 

of clients that can be supported by a single disk. With large caches on client and server 

workstations, the amount of data that is read from disks should be small; most of the 

traffic to disks will be data that is written. This can be seen by looking at the high ratio 

of network bytes written to network bytes read in Table 5-4. The writing policy will 

therefore determine the load that is placed on each disk, and hence the number of 

clients that a disk can support. 

There are three types of file blocks that a server must write to disk: data blocks, 

indirect blocks and file descriptor blocks. As explained in Section 3.4, the data blocks 

contain the actual data that is written by the client to the server's cache, and the file 

descriptor and indirect blocks describe where the data blocks reside on disk. In order to 

make the write of a new data block reliable, the data block, the file descriptor block, 

and possibly an indirect block need to be written to disk; an indirect block only has to 

be written if the data block is not one of the first 10 blocks in the file. If a client is writ

ing to a file block that has already been reliably written to disk, then it is not necessary 

to write the descriptor and indirect blocks through to disk. 

The server policy that requires the smallest amount of disk traffic is delay-30 (see 

Table 5-5). With this policy, not only are data blocks only written back after they have 

been in the cache for 30 or more seconds, but the same policy applies to directories and 

indirect blocks as well; file descriptor block write-backs are also delayed, but only for 

5 seconds. Since each file descriptor block can hold descriptors for 32 files, delaying 

the write of descriptor blocks to disk may allow descriptor information for several files 

to be written to disk at once. This can be very useful because, as explained in Section 

3.4, Sprite attempts to put file descriptor information for files that reside in the same 

directory in the same or nearby file descriptor blocks; thus, the file descriptors for many 

files within a given directory can be \Vritten to disk with only one disk write. 

Table 5-5 shows that, with the delay-30 server policy, the client policy has very 

little impact on the amount of disk traffic for either the Andrew or Vm-make bench

marks. For these two benchmarks, although more reliable client policies require more 

server transactions, the server delay-30 policy is able to eliminate many unnecessary 

disk operations; in the worst case, the disk is only 6% utilized. 

For the write-intensive Sort benchmark, the client policy does have an impact on 

the amount of disk traffic. When the client uses any of the four non-delayed-write poli

cies the disk writes increase by 42-71% over when full-delay is used. In addition, the 

disk is twice as utilized. 

It is interesting to note that with the Andrew benchmark the number of indirect 

and file descriptor disk writes are highest when the client uses a full-delay policy. This 

increase is actually totally due to extra descriptor writes and only occurred on two of 

the three runs of the benchmark. This increase in descriptor traffic is probably due to 

variabilities in when the daemon that cleans the cache ran on the server. Dirty descrip

tor blocks get written to disk the next time that the daemon runs. Thus if the daemon 
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Disk Traffic: 30-Second Delav on Server 

Andrew Vrn-make Son 

Client 
Disk 

Disk Writes 
Disk 

Disk Writes 
Disk 

Disk Writes 

Policy Uti! Data Ind/ Total Uti! Data Ind/ Total 
I Uti! Data Ind/ Total 

Dcsc Dcsc Dcsc 

WT I 
6'1o 498 154 652 3% 

I 
261 186 447 II 16C/o 4YO 37 528 

1.00 1.03 0.89 0.99 1.00 1.04 1.09 1.06 . 2.00 1.74 1.37 1.71 

WBOC I 
5% 483 

I 
149 632 3% 249 176 

I 
425 II 13% 405 34 

I 
439 

I 0.83 1.00 0.86 0.96 1.00 1.00 1.04 1.01 ' 1.63 1.44 1.26 1.42 

ASAP I 
6% 

I 
4Y6 154 

I 
650 

II 
3% 

I 
250 176 

I 
426 

II 
14% 

I 
420 34 454 

1.00 1.02 0.89 0.99 1.00 1.00 I 1.04 1.01 1.75 1.49 1.26 1.47 

WBOC-
I 

6% 499 
I 

145 644 I 3% 
I 

249 177 426 
I 

14% 
I 

420 
I 

33 454 

I ASAP 1.00 1.03 0.84 0.98 I 1.00 1.00 1.04 1.01 1.75 1.49 1.22 1.47 

dclay-30 II 
6% 484 156 641 3% 

I 
252 171 423 

I 
8% 282 27 309 

1.00 1.00 0.90 0.98 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 

full-
I 

6% 484 173 657 3% 250 170 420 8% 282 27 309 

delav 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

WT- 6% 485 152 637 
I 

3% 251 180 431 8% 
I 

282 28 310 

TMP 1.00 1.00 0.88 0.97 1.00 1.00 1.06 1.03 1.00 1.00 1.04 1.00 

WBOC- 5% 
I 

482 149 631 
I 

3% 249 177 426 
I 

8% 282 27 309 

TMP 0.83 1.00 0.86 0.96 1.00 1.00 1.04 1.01 1.00 1.00 1.00 1.00 

ASAP- 5% 483 145 628 
I 

3% 249 177 427 9% 282 27 309 

TMP 0.83 1.00 0.84 0.96 1.00 1.00 1.04 1.02 1.13 1.00 1.00 1.00 

Table 5-5. The amount of disk traffic with the delay-30 policy on the server. The top 

line for each client policy is the disk utilization and the number of disk writes for the 

three benchmarks. The bonom line is the top line divided by the disk utilization or 

number of disk writes with the full-delay policy on the client and the delay-30 policy 

on the server. Note that the numbers in the bottom line should never be lower than 1.0 

since the full-delay policy should give the smallest number of disk writes. However, 

because of the small number of disk transfers and slight variabilities 
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Disk Traffic: Write-Through on Server 

! Andrew il Vm-make Sort 

Client I Disk Writes 
If Disk 

Disk Writes 
I Disk 

Disk Writes 

Policy 
I 

Disk 
Data Ind/ Total Data lnd/ I Total Data lnd/ 

I Uti! 
Desc 

Uti! 
Desc 

Uti! 
Desc 

Total I 

\VT II 
33% 1828 2682 4511 11 2o% 1027 1596 I 2623 II 45% 745 1356 

I 
2101 I 

5.50 3.78 15.50 6.87 . 6.67 4.11 9.39 1 6.25 5.63 2.64 50.22 6.80 . 

I \\'BOC II 
26% 

I 
1171 2016 3187 

II 
17% 820 1385 2205 1145% 745 1354 

I 
2099 

4.33 2.42 11.65 4.85 5.67 3.28 8.15 5.25 5.63 2.64 50.15 6.79 

ASAP II 
29% 1153 

I 
1941 3094 

I 
19S"'o 824 13~6 2211 

II 
79% 745 1339 2084 

4.83 2.38 11.22 4.71 6.3: 3.30 8.15 5.26 9.88 2.64 49.59 6.74 

I 'W'BOC- I 28% 1196 
I 

2039 
I 

3235 19% 842 1405 
I 

2247 64% 745 
I 

1352 2097 

ASAP 4.67 2.47 11.79 4.92 6.33 3.37 8.26 5.35 8.00 2.64 I 50.07 6.79 

dclay-30 I 
18% 734 1399 2133 

I 
10% 395 801 1196 39% 507 871 1378 

3.00 1.52 8.09 3.25 3.33 1.58 4.71 2.85 I 4.88 1.80 32.26 4.46 

full- 17% 718 1489 2207 
I 

10% 384 779 1163 27% 303 572 875 

delav 2.83 1.48 8.61 3.36 3.33 1.54 4.58 2.77 3.38 1.07 21.19 2.83 

WT- 27% 1383 2134 3517 14% 596 1026 1623 27% 303 572 
I 

875 

TMP 4.50 2.86 12.34 5.35 4.67 2.38 6.04 3.86 3.38 1.07 21.19 2.83 

WBOC- 20% 829 
I 

1573 2402 10% 390 806 1196 27% 303 573 
I 

876 

TMP 3.33 1.71 9.09 3.66 3.33 1.56 4.74 2.85 3.38 1.07 21.22 2.83 

ASAP- 21% 
I 

&41 1563 2404 11% 412 828 1240 34% 303 572 875 

TMP 3.50 1.74 9.03 3.66 3.67 1.65 4.87 2.95 4.25 1.07 21.19 2.83 

Table 5-6. The amount of disk traffic with the write-through policy on the server. The 
top line for each client policy is the disk utilization and the number of disk writes for 

the three benchmarks. The bottom line is the top line divided by the disk utilization or 

number of disk writes with the full-delay policy on the client and the delay-30 policy 

on the server. 

ran while the client was writing back all of its data blocks at the end of the benchmark 

then the number of descriptor disk v.Tites would be higher than if daemon did not run at 

all. 

When the server uses write-through instead of delay-30, the amount of disk traffic 

goes up tremendously (see Table 5-6 and Figure 5-2); the number of disk writes 

increases by up to a factor of 7 and the disk is up to 79% utilized. With write-through, 
whenever the server receives a write request for a new block from a client, it writes the 

data, indirect and file descriptor blocks through to disk. As a result, each client write 
operation can require up to three disk writes. In addition, when files are created, the 

directory that the file is created in is also written through to disk; this will result in both 

extra data writes and extra descriptor writes. The greatest increase in disk writes comes 

from file descriptor and indirect block writes which increase by as much as a factor of 
50; whereas with the server delay-30 policy the descriptor and indirect blocks may only 

be written to disk once for an entire file, with v.Tite-through they are written to disk 

once for every block. 

The worst client policy in conjunction with server WT is client \VT. Client WT is 
the worst because it is the only policy that does not wait unril either a file system block 
fills up or the file is closed_ As a result, it requires more server transactions and hence 

more disk writes than any other policy for both the Andrew and Vm-make benchmarks. 

Client WT does not require more disk transactions with Son because Sort always writes 



D 
i 
5 

k 

T 

a 
f 
f 
i 
c 

R 
a 
t 

i 
0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

' 
' 

" 

-/.~" --------···· 
c, 

"/ 
' 

-~~----n·---, 

/ 

Cj I ..... --- ·--
''} 

- ~- ------
~~ 
> 

56 

~ :01' 
0: ........................ ~ ...................... i .............................................................................................................. . 
~ w 
"0; ~ 

-/ ····r:-· ~------------··---------------------- ------------------------------------------------
r- 0 ~ 

""' ~ . ~_. __ 1 ___ -- ;1::1 ____________ ~--------------···--· .. ·············;·············;·····--·----·-

~- / ~ 

<J :{,: - ~ I 

-}r· ' . if ....... r .. ·····;;···· .. . ·•···· . ·-w·· .. ··-·r· 
--~ ------1 - .1"/ --- .. - !---- -- -~_?'_~_ --- --- ~ ••• • -~ --- -- - ~ --·-

i ~ ~ t ~ ~~ ~ 
-x "0 ,, , !% '/;. 
~ :;; !;; ~ ,, ~ 

WT WBOC ASAP WBOC- delay-30 full-delay WT- WBOC- ASAP-
ASAP TMP TMP TMP 

c=:J Andrew - Vm-make 1%%'.$/j Sort 

Figure 5-2. Ratio of disk writes with a write-through policy on the server and the 
client policies in this figure to disk writes with full-delay on the client and delay-30 on 
the server. 

data in file system block size chunks. 

Figure 5-2 shows that for the three benchmarks even the full-delay and delay-30 

client policies cause the amount of disk traffic to triple; the main cause of this increase 
is the extra file descriptor and indirect block writes. As the client uses more reliable 

v.Titing policies that require more server interactions, disk writes increase by another 
factor of two. Except for the WT-TMP policy, the use of the full-delay policy with 

temporary files is effective in eliminating most of the extra disk writes caused by the 
more reliable policies. Both the \VBOC-Tr-.1P and ASAP-TMP client policies have the 

same amount of disk traffic as the full-delay policy. The \VT-TMP policy is not nearly 

as effective as the other temporary file policies in eliminating disk traffic for either the 
Andrew or Vm-make benchmarks; this is for the same reason given above why normal 
client write-through causes the highest number of disk writes. 

The server ASAP policy potentially allows the server to eliminate many of the 

data, indirect and descriptor disk writes required with write-through. \Vith the ASAP 
policy the data, descriptor and indirect block writes are scheduled ro happen as soon as 

possible but the client write request is allowed tO complete before the disk writes do. 

This has the advantage that, if a client is able to complete multiple accesses to a single 

data, descriptor or indirect block before the block can be written to disk, then disk 
writes can be eliminated. Table 5-7 and Figure 5-3 show that ASAP is able to eliminate 

up to half of the disk writes required with write-through. 
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Disk Traffic: ASAP on Server 

I Andrew I Vm-make II Sort 

Client 

I 
Disk 

Disk Writes 
Disk Disk Writes I Disk 

Disk Writes 

Policy Uti! Data Ind/ Total Uti! Data Ind/ T Olal I Uti! Data lnd/ Total 
Desc Desc Desc 

WT 
23% 1002 

I 
1497 

I 
2499 

II 
17% 7S9 1096 

I 
leSS 

II 
69% 729 107S 1804 

3.83 2.07 8.6S 3.80 S.67 3.04 6.4S 4.42 8.63 2.S9 39.81 5.84 

\VBOC 
16% 9S2 

I 
7S3 1705 

I 
11% 737 528 

I 
1266 29% 731 208 940 

2.67 1.97 4.35 2.60 3.67 2.95 3.11 3.01 3.63 2.59 7.70 3.04 

ASAP I 
21% 988 1106 

I 
2095 

I 
16% 752 999 

I 
1752 li 70% 727 1014 1742 

3.50 2.04 6.39 3.19 5.33 3.01 5.88 4.17 .I 8.75 2.58 37.56 5.64 

WBOC- I 21% 988 1101 2090 
I 

16% 7SO 1006 17S6 
II 

70% 728 1020 
I 

1748 

ASAP I 3.50 2.04 6.36 3.18 5.33 3.00 5.92 4.18 8.75 2.58 37.78 5.66 

delay-30 
11% 

I 
608 

I 
626 

I 
1234 7% 365 

I 
430 795 

I 
19% 415 148 563 

1.83 1.26 3.62 1.88 2.33 1.46 2.53 1.89 2.38 1.47 5.48 1.82 

full-
I 

10% 597 
I 

584 1181 
I 

7% 363 391 755 
I 

14% 301 120 422 

delav 1.67 1.23 3.38 1.80 2.33 1.45 2.30 1.80 1.75 1.07 4.44 1.37 

WT- 16% 718 1151 1870 
II 

8
% 

389 545 935 35% 301 539 841 

TMP I 2.67 1.48 6.65 2.85 2.67 1.56 3.21 2.23 4.38 1.07 19.96 2.72 

WBOC- 12% 664 677 1342 7% 368 412 780 
I 

14% 302 114 416 

TMP 2.00 1.37 3.91 2.04 2.33 1.47 2.42 1.86 1.75 1.07 4.22 1.35 

ASAP- 14% 
I 

712 787 1499 7% 384 460 845 
I 

34% 299 507 806 

TMP 2.33 1.47 4.55 2.28 2.33 1.54 2.71 2.01 4.25 1.06 18.78 2.61 

Table 5-7. The amount of disk traffic with the ASAP policy on the server. The top 
line for each client policy is the disk utilization and the number of disk writes for the 
three benchmarks. The bottom line is the top line divided by the disk utilization or 
number of disk writes with the full-delay policy on the client and the delay-30 policy 
on the server. 
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Figure S-3. Ratio of disk writes with an ASAP policy on the server and the client pol
icies in this figure to disk writes with full-delay on the client and delay-30 on the 
server. 

The most dramatic reduction in disk traffic with server ASAP occurs when the 
client uses one of the delay-30, full-delay, \VBOC or WBOC-TMP policies. The main 

reason for the reduction in disk traffic for these 4 policies is the tremendous reduction in 

indirect and file descriptor block writes. Indirect and file descriptor disk traffic is 
reduced because the delay policies and the WBOC policies all write many blocks of 
data to the server in succession. For example, WBOC will not write any data blocks 
through to the server until the file is closed. Once the file is closed the client will send 

over the entire file. Since many blocks are written in succession, each file descriptor 

and indirect block can be updated many times before it ends up getting written to disk. 

The LDB server policy provides good reliability in the case of server crashes, yet 

provides reasonably low disk traffic (see Table 5-8 and Figure 5-4). With this policy, 

data, descriptor, and indirect blocks are not written through to disk until the last dirty 
block from the file arrives from the client; the server uses the delay-30 policy in combi

nation with this policy so that modified directories will get written through to disk 

periodically. The LDB policy eliminates varying amounts of disk traffic depending on 
the client's policy. 

When clients use either the full-delay or delay-30 policy, LDB keeps the disk 

traffic fairly low; each indirect block only gets written to disk once and there is exactly 

one file descriptor block write per file. The one benchmark for which LDB is the least 

effective is Sort; when the delay-30 policy is used on the client, Sort generates 50% 

more disk writes than with the full-delay policy. This is because Sort is the one 
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Disk Traffic: Last Dirtv Block 

Andrew I Vm-makc :; Sort 

Client 

I 

I D kW. Disk Writes Disk Writ~s Disk 15 ntcs I Disk II Disk Policy Uti! I Data lnd/ Total Uti! Data lnd/ Total Uti! Data lnd/ Total 
, Desc Desc I Desc 

9% 
I 

939 
I 

368 1307 I 69. 6l37 309 997 17% 721 60 781 
WT 1.50 1.94 2.13 1.99 I 2.0~ 2.75 1.82 2.37 2.13 2.56 2.22 2.53 

\VBOC I 
9% 937 

I 
316 

I 
1253 6% 685 269 

I 
954 17% 724 50 774 

1.50 1.94 1.83 1.91 2.00 2.74 1.58 2.27 2.13 2.57 1.85 2.50 

ASAP 
15% 818 ! 621 1439 112% 672 721 1393 52% 

! 
723 

I 
656 1379 

2.50 1.69 ! 3.59 2.19 4.00 2.69 4.24 3.32 6.50 2.56 24.30 4.46 

\VBOC- I 15% 937 
I 

656 1594 1 12% 689 744 
I 

1433 I 509'o 724 665 1389 
A5AP 2.50 1.94 3.79 2.43 I 4.00 2.76 4.38 3.41 6.25 2.57 24.63 4.50 

delay-30 
6% 484 

I 
205 690 

I 
3% 260 190 

I 
450 13% 

I 
403 

I 34 438 
1.00 1.00 1.18 1.05 1.00 1.04 1.12 1.07 1.63 1.43 1.26 1.42 

full- 7% 483 
I 

228 711 
II 

3% 250 184 434 8% 
I 

282 
I 

27 309 

del a" 1.17 1.00 1.32 1.08 1.00 1.00 1.08 1.03 1.00 1.00 1.00 1.00 

V..'T-
I 

7% 596 278 
I 

875 
I 

3% 258 206 
I 

465 
I 

8% 280 
I 

27 
I 

307 

TMP 1.17 1.23 1.61 1.33 1.00 1.03 1.21 1.11 1.00 0.99 1.00 0.99 

WBOC-
I 

7% 595 250 845 3% 256 181 
I 

437 8% 
I 

282 28 310 
TMP 1.17 1.23 1.45 1.29 1.00 1.02 1.06 1.04 1.00 1.00 1.04 1.00 

ASAP-
I 

8% 559 303 862 3% 260 
I 

201 461 
I 

24% 282 346 
I 

628 

TMP 1.33 1.15 1.75 1.31 1.00 1.04 1.18 1.10 3.00 1.00 12.81 2.03 

Table 5-8. The amount of disk traffic with the LDB policy. The top line for each 

client policy is the disk utilization and the number of disk writes for the three bench
marks. The bottom line is the top line divided by the disk utilization or number of disk 
writes with the full-delay policy on the client and the delay-30 policy on the server. 

I 

benchmark that has temporary files that live longer than 30 seconds; as a result, some 

data from temporary files ends up getting written through to the server's disk. 

The client WT and WBOC policies perform much better with the LDB policy than 

when either ASAP or WT are used on the server. When the client uses \VT or WBOC, 

the server only ends up writing back the data for the file when the file is closed. How

ever, this still requires up to 2.5 times as many disk writes as when the client uses a 

delayed-write policy. 

I could have implemented the combination of the client WT policy and the LDB 

policy in a different way. \Vhen the client uses write-through, each block that is written 

to the server is the last dirty block that the client has for the file; thus, in the most 

straightforward implementation of LDB, each block that was written to the server 

would be marked as being the last diny block. However, this v:ould be no different 

than if the server used a write-through policy. In order to get a different data point I 

implemented the combination of client \VT and LDB so that the file is only forced to 

disk when the file is closed. 

The client ASAP policies do not perform very well under the LDB policy. Unless 

a user program can generate cache blocks faster than the operating system can write 

them back to the server, the client will think that each newly generated block is the last 

diny block in the file. This results in up to 24 times as many descriptor and indirect 
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Figure 5-4. Ratio of disk writes with the LDB policy and the client policies in this 
figure to disk writes with full-delay on the client and delay-30 on the server. 

block writes as when the client uses delayed-write. 

The client policies that treat temporary files specially work well with the LDB pol
icy. For both the Andrew and Vm-make benchmarks, all three of the temporary file 
policies require less than 40% more disk writes than when the client uses delayed-write 
for all files. Although both the WT-TMP and WBOC-TMP policies also perform very 
well on the Sort benchmark, the ASAP-TMP policy requires twice as many disk bytes 
as the delayed-\vrite policy. 

5.4. Client Elapsed Time 

From a client's viewpoint, the most important performance measurement is the 
amount of time that it takes to execute the benchmark. Table 5-9 shows that, when the 
server uses the delay-30 policy, the elapsed time on the client is basically the same 
regardless of the policy used on the client. However, when the server uses a write
through policy, the client policy becomes very important (see Table 5.10 and Figure 5-
5). The extra synchronous disk writes on the server can make a client take up to twice 
as long to execute the benchmark as when the server uses a delay-30 policy. Even the 
WT-TMP and WBOC-TMP polices can slow the client down by over 40%. The only 
client policies that work uniformly well with server write-through are the full-delay, 
delay-30, ASAP and ASAP-TMP policies, which have at worst 21 o/c degradation; these 
policies can handle the extra disk writes because the client programs do not have to 

wait for the writes to complete. 



Client Elapsed Time and Server Utilization: 30-Second Delav on Server 

Client 
Andrew Vm-make Sort 

Policy 
Elapsed Server Elapsed Server Elapsed Server 

Time Util Time Util Time Util 

WT 
279 12.98 300.08 9.33 

I! 
66.10 11.22 

1.04 1.17 1.04 1.14 1.14 2.01 

WBOC II 
276 12.26 299.19 9.10 65.22 10.94 
1.03 1.10 1.03 1.11 1.13 1.96 

ASAP 
273 12.55 296.60 9.30 62.53 11.51 
1.02 1.13 1.02 1.14 1.08 2.06 

\VBOC-ASAP 
273 12.52 296.68 9.31 62.48 11.47 
1.02 1.12 1.02 1.14 1.08 2.06 

delay-30 
269 11.37 290.97 8.25 58.66 7.02 
1.00 1.02 1.00 1.01 1.01 1.26 

full-delay 
268 11.13 289.81 8.18 57.92 5.58 
1.00 1.00 1.00 1.00 1.00 1.00 

WT-TMP 
275 12.16 293.67 8.47 60.48 5.65 
1.03 1.09 1.01 1.04 1.04 1.01 

WBOC-TMP 
274 11.55 293.71 8.23 60.52 

I 
5.63 

1.02 1.04 1.01 1.01 1.04 1.01 

ASAP-TMP 
272 11.73 294.13 8.35 59.36 5.71 
1.01 1.05 1.01 1.02 1.02 1.02 

Table 5-9. The amount of time required to execute each benchmark and the percent of 
the server that is utilized with the delay-30 policy on the server. The top line for each 
client policy is the number of seconds to execute the benchmark and the percent of the 
server that was utilized while executing the benchmark. The bottom line is the top line 
divided by the execution time or server utilization in the best case (full-delay policy on 
the client and delay-30 policy on the server). 

61 



Client Elapsed Time and Server Utilization: WT on Server 

Client I Andrew Ym-make Son 

Policy 
Elapsed Server Elapsed Server Elapsed Server 

Time Uti! Time Uti! Time Uti! 

424 11.03 370.13 9.13 I 124.45 10.11 
WT 

I 1.58 0.99 1.28 1.12 2.15 1.81 
I 

378 10.83 
I 

359.06 8.86 
I 

124.58 
I 

10.10 
WBOC I 1.41 0.97 1.24 1.08 2.15 1.81 

ASAP 
316 12.87 312.51 10.0-+ 

I 
65.54 17.64 

1.18 1.16 I 1.08 1.23 1.13 3.16 

WBOC-ASAP 
345 12.01 329.82 9.71 87.38 14.15 
1.29 1.08 I 1.14 1.19 1.51 2.54 I 

delay-30 
295 11.25 307.69 8.13 

I 
70.04 9.41 

1.10 1.01 1.06 0.99 1.21 1.69 

full-delay 
292 

I 
10.79 304.88 8.09 60.53 6.69 

1.09 0.97 1.05 0.99 1.05 1.20 

WT-TMP 
380 10.79 339.18 8.21 

I 
84.16 6.60 

1.42 0.97 I 1.17 1.00 1.45 1.18 I I 

WBOC-T!\1P 
343 10.56 325.96 7.93 83.77 6.57 
1.28 0.95 1.12 0.97 1.45 1.18 

ASAP-TMP 
310 11.75 309.31 8.33 61.70 8.24 
1.16 1.06 1.07 1.02 1.07 1.48 

Table 5-10. The amount of time required to execute each benchmark and the percent 

of the server that is utilized with the write-through policy on the server. The top line 
for each client policy is the number of seconds to execute the benchmark and the per
cent of the server that was utilized while executing the benchmark. The bottom line is 

the top line divided by the execution time or server utilization in the best case (full
delay policy on the client and delay-30 policy on the server). 
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Figure 5-5. Additional elapsed time to execute each benchmark with a write-through 
policy on the server and the client policies in this figure relative to full-delay on the 
client and delay-30 on the server. 
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Client Elapsed Time and Server Utilization: ASAP on Server 

Client 
Andrew 

I 
Vm-make I Sort 

Policy 
Elapsed Server Elapsed Server Elapsed Server 

Time Util Time Util Time Uti! 

VlT 282 14.42 
I 

301.27 10.40 65.71 17.05 
1.05 1.?0 1.04 1.27 1.13 3.06 

WBOC 
279 13.01 300.22 9.63 66.04 12.99 
1.04 1.17 1.04 1.18 1.14 2.33 

ASAP 
277 13.65 298.06 10.27 61.94 17.72 
1.03 1.23 1.03 1.26 1.07 3.18 

WBOC-ASAP 
277 13.61 298.42 10.28 62.00 17.68 
1.03 1.22 1.03 1.26 1.07 3.17 

delay-30 
270 11.65 292.28 8.28 58.86 7.91 
1.01 1.05 1.01 1.01 1.02 1.42 

' 

I 
268 

I 
11.47 290.27 8.20 i 57.98 5.90 

full-delay 
1.00 1.03 1.00 1.00 1.00 1.06 

WT-TMP 
276 13.14 294.77 8.72 60.90 8.62 

1.03 1.18 1.02 1.07 1.05 1.54 

WBOC-TMP 
274 12.06 294.32 8.33 60.80 6.01 

1.02 1.08 1.02 1.02 i 1.05 1.08 

ASAP-Tt-.1P 
273 12.40 293.37 8.54 

I 
59.38 8.58 

1.02 1.11 1.01 1.04 1.03 1.54 

Table S-11. The amount of time required to execute each benchmark and the percent 

of the server that is utilized with the ASAP policy on the server. The top line for each 

client policy is the number of seconds to execute the benchmark and the percent of the 

server that was utilized while executing the benchmark. The bottom line is the top line 

divided by the execution time or server utilization in the best case (full-delay policy on 

the client and delay-30 policy on the server). 
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Figure 5-6. Additional elapsed time to execute each benclunark with an ASAP policy 
on the server and the client policies in this figure relative to full-delay on the client and 
delay-30 on the server. 

A server policy that provides reliability nearly as good as write-through yet does 

not slow down the client much is ASAP (see Table 5-11 and Figure 5-6). With the 

ASAP policy, the client slows down by less than 15% in the worst case. This perfor
mance is possible because the disk writes are asynchronous: a client does not have to 

wait for the disk write to complete before it can continue execution. 

The LDB server policy provides better client performance than write-through but 

not nearly as good as ASAP (see Table 5-12 and Figure 5-7). Since clients have to wait 

for disk writes to complete when they close a file under the \VBOC and WT policies, 

the client's performance degrades by up to 35%. However, if the client uses any of the 

other policies, then the degradation is 14% or less, with no noticeable degradation with 

the full-delay and delay-30 policies. 

5.5. Server Utilization 

Although the delay-30 policy on the server allows clients to use more reliable poli

cies without suffering degradation, the more reliable policies can put a high load on the 

server. Table 5-9 presented in the previous section shows the server utilization with the 

delay-30 server policy when' executing the 3 benchmarks with the 9 different client 

writing policies. With the Andrew and Vm-make benchmarks, the clients are able to 

use the more reliable policies without adversely effecting server utilization; the worst 

case is client WT, which utilizes the server 1.17 times as much as the best case utiliza

tion, which is obtained with the full-delay policy. However, with the very intensive 



Client ElaJsed Time and Server Utilization: Last-dirtv-block Policv 

Client 
Andrew Vm-make Sort 

' 

Policy 
Elapsed Server 

I 
Elapsed Server Elapsed Server 

Time Util Time Util Time Util 

\VT 
I 

306 12.87 317.58 9.72 79.49 
I 

10.34 
1.14 1.16 1.10 1.19 1.37 1.85 

WBOC 
302 12.09 315.66 9.26 

II 
78.58 10.67 

1.13 1.09 1.09 1.13 1.36 1.91 

ASAP 
I 

277 13.75 
I 

299.14 10.54 62.51 20.33 
1.03 1.24 I 1.03 1.29 1.08 3.64 

WBOC-ASAP I 
294 13.15 305.30 10.38 

I 

64.84 19.85 
1.10 1.18 1.05 1.27 1.12 3.56 

delay-30 
269 11.68 291.85 8.43 59.47 8.02 
1.00 1.05 1.01 1.03 1.03 1.44 

full-delay 
267 11.32 291.47 8.34 57.94 6.07 
1.00 1.02 1.01 1.02 1.00 1.09 

WT-TMP 
292 12.09 302.90 8.71 65.28 5.60 
1.09 1.09 1.05 1.06 1.13 1.00 

WBOC-TMP I 
290 11.42 301.56 8.24 

I 
65.81 6.09 

1.08 1.03 1.04 1.01 I 1.14 1.09 

ASAP-TMP 
II 

275 12.27 293.59 8.60 
I 

59.29 10.90 
1.03 1.10 1.01 1.05 1.02 1.95 

Table 5-12. The amount of time required to execute each benchmark and the percent 
of the server that is utilized with the last-dirty-block policy. The top line for each 
client policy is the number of seconds to execute the benchmark and the percent of the 
server that was utilized while executing the benchmark. The bottom line is the top line 
divided by the execution time or server utilization in the best case (full-delay policy on 
the client and delay-30 policy on the server). 
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Figure 5-7. Additional elapsed time to execute each benchm~~K with an LDB policy 

on the server and the client policies in this figure relative to full-delay on the client and 

delay-30 on the server. 
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Figure 5-8. Ratio of server utilization with a write-through policy on the server and 
the client policies in this figure to server utilization with a full-delay policy on the 
client and the delay-30 policy on the server. 

Sort benchmark, all of the non-delayed-write polices cause the server utilization to dou
ble. 

When the server uses write-through instead of delay-30, the server utilization 
improves for some client writing polices and gets worse for others (see Table 5-10 and 
Figure 5-8). If the client uses the WT or WBOC client polices, the clients slow down 
so much that the server utilization drops for all three benchmarks. \Vhen the client uses 
either the ASAP or WBOC-ASAP policies, the server utilization increases so that for 
the Sort benchmark it is up to 3 times higher than the best case; for the Andrew and 
Vm-make benchmarks, the utilization increases slightly but is still at worst only 1.26 
times the best case utilization. The reason why the client ASAP policies cause the 
server utilization to increase is that the server's workload is increased but the clients are 
not much slower than the best case elapsed time. For the same reason even the client 
delayed-v..Tite and temporary-file polices have slightly higher server utilization with the 
Sort benchmark and server write-through. 

The server ASAP policy is the worst policy for server utilization (see Table 5-11 
and Figure 5-9). \Vith this pnlicy the clients do not slow down by much, but the server 
does more work than when it uses delay-30. For the Andrew and Vm-make bench
marks, the server utilization is still fairly low; in the worst case it is only 1.3 times the 
best case utilization. However, with the Son benchmark, each of the policies WT, 
\VBOC, ASAP and \VBOC-ASAP have a server utilization that is between 2.5 and 3 
times the best case utilization. \Vith the delayed-write and temporary file policies, the 
utilization is worse for some policies and better for others; in the worst case, the 
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Figure 5-9. Ratio of server utilization with an ASAP policy on the server and the 

client policies in this figure to server utilization with a full-delay policy on the client 

and the delay-30 policy on the server. 
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Figure 5-10. Ratio of server utilization with the LDB policy and the client policies in 
this figure relative to a full-delay policy on the client and the delay-30 policy on the 

server. 

utilization is 1.5 times the best case utilization. 

The LDB policy is in between the server ASAP policy and the server WT policy 

(see Table 5-12 and Figure 5-10). For the Son benchmark, it gives utilization as high 

as the server ASAP policy when the clients use either the ASAP or WBOC-ASAP poli
cies and as low as the server WT policy if the clients use either the WT or WBOC poli
cies. It is highest when clients use an ASAP policy because the clients force extra disk 

writes on each server cache write without slowing down. The utilization is lower with 

the \VT and WBOC policies because only a single extra data block and disk block write 

is required for each file. One thing to note is that, although the server utilization with 

the client \VT and \VBOC policies is the same with the LDB and server WT policies, 

the client benchmarks complete much faster with the LDB policy. 

5.6. Effect of Disk Layout on "'rite Performance 

As mentioned before, the Sprite file system's disk reading and writing perfor

mance is not as good as that of other systems such as Ul\lX 4.2 BSD [MJL84]. Sprite's 

poor writing performance could potentially contribute to the extra client degradation, 

server utilization and disk utilization when more reliable server writing policies are 

used. There are two areas where Sprite disk writing performance could be improved. 

First, currently Sprite can only transfer one block per disk revolution because consecu

tive data blocks are not allocated in rotationally optimal locations on disk; by using a 

better disk layout policy, Sprite could get much higher throughput to disk. Second, 

Sprite does not put descriptor and indirect blocks close to the data blocks; this can 
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require long seeks when a file descriptor or indirect block write is followed by a data 
block write. 

The policy which would benefit most from improving the disk layout policy is 
LDB. When the client uses any policy but ASAP in conjunction with LDB, the server 
will have all of the files blocks in its cache before it has to write any of the blocks to 

disk. Thus, if consecutive blocks in a file were in rotationally optimal positions, the 
server could write the entire file to disk very quickly. This would lower disk utilization 
and client degradation. 

Neither the write-through or ASAP server policies would benefit much from a 
better layout policy. Both of these policies require that, whenever a data block is writ
ten to disk, the file descriptor and indirect blocks be written to disk as well. Thus, 
between every write of a data block there will have to be a seek to the descriptor or 
indirect block. 

Reducing the seek time between data, indirect, and descriptor blocks could have a 
big effect on the performance of the server ASAP and write-through policies; its biggest 
effect would be on client elapsed time with the server write-through policy. In order to 
approximate the impact of the seek time I measured the writing performance with 
server write-through on both a very large disk partition which will cause long seeks and 
on a very small disk partition which will have short seeks. I measured that a client can 
transfer 49 Kbytes per second to the small partition and 36 Kbytes per second to the 
large panition. This means that in the best case client degradation will only be 36/49, 
or 73% as high if the length of disk seeks were reduced. However, Table 5-13 shows 
that, even with this reduction in client degradation, clients still slow down substantially 
when they use either the WT or WROC": oolicies and the server uses write-through. 

Client De£radation with Reduced Seek Times 

Client 
Andrew Vm-make Sort 

Policv Before After II Before After II Before After 
\VT 58% 43% I 28% 21% I 115% 84% 

\VBOC 
i 41% I 30% I 24% 18% II 1157o 84% 

ASAP 18% 13% 8% 6% I 13% 10% 

WBOC-ASAP 29% 21% 14% 10% I 51% 37% 

Table 5-13. The effect of shortening seek times between file descriptor, indirect and 
data blocks when the server uses write-through. The Before column is the degradation 
when the benchmarks were run on the normal large disk partition (98% of disk) and 
the After column is an approximation of what the degradation would be if the bench
marks were run on a small partition (2% of the disk). 
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5.7. Comparison to r\'FS 

Sun's Network File System (NFS) uses the WBOC-ASAP policy on the client and 

a write-through policy on the server. Table 5-10 shows that this policy will cause the 

Andrew benchmark to execute 29% slower than with the writing policies used on 

Sprite. Even if !'-.'FS is able to get the better disk performance shown in Table 5-13, the 

benchmark would execute 21% more slowly. In Chapter 4 I showed that Sprite executes 

the Andrew benchmark about 30% faster than NFS. It appears from the results in this 
chapter that up to two-thirds of the performance difference comes from the writing poli

cies used in :t\FS. 

5.8. Summary and Conclusions 

In this chapter I have examined numerous client and server writing policies. As 

expected, the writing policies that provide the best overall performance in terms of net

work load, disk load, server load and client elapsed time are delayed-write policies. 

From a client's viewpoint, the most important performance metric is execution time 

degradation. If the server uses a delayed-write policy, then the client's policy will have 

only a small impact on the time it takes to execute a benchmark; the client delayed

write policies provide the best client performance, but even the more reliable client pol

icies will cause degradation of at most 14% if the server uses the delay-30 policy. The 
ASAP and LDB server policies also allow the client to use more reliable policies with 

only modest degradation. However, if the server uses a write-through policy, then the 

more reliable client policies can cause up to a 115% degradation in client performance. 

In terms of determining the scalability of the system, the most important factors 

are server, disk and network load; the writing policies can have a dramatic impact on 

each of these factors. The amount of network traffic is independent of the server policy. 

The more reliable client policies can cause the network traffic to more than double over 

the delayed-write policies. Thus, the delayed-write client policies can allow the net

work to support up to twice as many clients as the other client writing policies. 

Both the client and the server writing policies have a big impact on server utiliza

tion. The non-delayed-write client policies can cause the server utilization to double 

even when the server uses the delay-30 policy. The client policy has an even bigger 

impact when the server uses more reliable policies such as write-through and ASAP; for 

these server policies the non-delayed-write client policies can cause the server utiliza

tion to triple. If the server uses a non-delayed-write policy, even the delay-30 client 

policy causes server utilization to be up to 1.7 times higher. Thus, if the server and the 

client use delayed-write policies, then a server can support up to 3 times as many clients 

as when non-delayed-v.:rite policies are used. 

The utilization of the disk also increases dramatically with non-delayed-write poli

cies. \Vhen the server uses a write-through policy the amount of disk traffic will 

increase by up to a factor of 7; even the client delayed-write policies will cause the disk 

traffic to triple with server write-through. The LDB and ASAP server policies give less 

disk writes than server v.Tite-through, but more than when the server uses delay-30. 

Thus, if the server does not use the delay-30 policy then the number of clients that can 

be supported by each disk will be much lower. 
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One potential way to give clients both high reliability and high performance is to 

rreat temporary files specially: use a reliable policy for most files but use a full-delay 
policy for temporary files. For the three benchmarks, all of which use temporary files 

extensively, treating temporary files specially is reasonably effective. With the delay
temp-files policies, the network traffic and server utilization are close to the delay-30 

and full-delay client policies. However, when the server uses more reliable writing pol

icies, the benchmarks can execute up to 45% more slowly than the best client policy, 

and the disk can be up to twice as utilized. The one benchmark for which delaying tem
porary files works best is Sort, which writes all of its output except for the final result to 

temporary files. Thus, using full-delay on temporary files and a more reliable policy on 
other files shows some potential, but it is not able to totally insulate the client from 
more reliable server writing policies. If other files besides those in the /tmp directory 

were considered temporary files (such as object files), then special casing of temporary 

files would be more effective. 

Server write-through is by far the worst server policy in terms of performance. I 

have presented two alternatives to server write-through, which provide nearly as good 

reliability, yet with better performance. Both the ASAP and LDB policies work very 

well with the full-delay and 30-second delay client policies; they give low disk and 
server utilization, while allowing the clients to execute without suffering degradation. 

The policies which delay temporary files also work reasonably well with the ASAP and 
LDB policies, although there is higher disk utilization and client degradation than when 

the client uses the full-delay and delay-30 policies. The ASAP and LDB policies work 
better than write-through with the 4 non-delayed-write client policies. However, LDB 
can still cause serious client degradation, and ASAP can cause very high disk and 
server utilization. 

This chapter has shown that the writing policy can have a large impact on both 
client and server performance. The best policies for performance are the worst for reli
ability, and the best policies for reliability are the worst for performance. Thus, the 

writing policy to use for clients and servers must be a compromise between perfor
mance and reliability. The choice of the writing policy will become even more impor
tant in the future, as CPU speeds increase dramatically but disk speeds do not; any pol
icy that requires application programs to wait for the disk will cause serious perfor

mance degradation. 
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CHAPTER 6 

Variable-Sized Caches 

6.1. Introduction 

1 have shown that file data caches are very effective in providing high performance 

to diskless clients. In order to get the maximum benefit from client caching, it is desir

able to let each client cache be as large as possible. For example, applications that do 

not require much virtual memory should be able to use most of the physical memory as 

a file cache. However, if the caches were fixed in size (as they are in Ui'{IX), then large 

caches would leave little physical memory for running user programs, and it would be 

difficult to run applications with large vinual memory needs. Therefore a mechanism is 

needed that lets each file cache grow and shrink dynamically in response to changing 

demands on the machine's virtual memory system and file system. 

This chapter looks at approaches to providing variable-sized file system caches. It 

is organized as follows: Section 6.2 summarizes previous work in this area; Section 6.3 

describes the approach that I implemented in Sprite; Section 6.4 analyzes the perfor

mance of the Sprite mechanism; Section 6.5 measures the effect on performance of 

modifications to the Sprite algorithm; Section 6.6 compares the performance of the 

Sprite approach to other approaches; and Section 6.7 gives a summary and offers some 

conclusions. 

6.2. Previous \Vork 

The approach that has been commonly used to provide variable-size file system 

caches is to combine the virtual memory and file systems together; this is generally 

called the mapped-file approach. To access a file, it is first mapped into a process's vir

tual address space and then read and written just like virtual memory. This approach 

eliminates the file cache entirely; the standard page replacement mechanisms automati

cally balance physical memory usage between file and program information. Mapped 

files were first used in Multics [BCD72, DaD68] and TENEX [BB.M72, Mur72]. More 

recently they have been implemented in Pilot [Red80], Accent [RaR81, RaF86], Apollo 

[LLH85, Lea83] and Mach [Ras87]. 

Mapped files present a much different interface than systems such as Ul\TI that 

keep the file system and virtual memory system separate. Under the Ui'.TI approach, 

users use system calls such as read and write to access file data. These system calls 

copy data between the file data cache and the vinual address space of user processes. 

By using mapping techniques, the mapped-file approach can eliminate many of the 

copy operations required under the U~rrx: approach. 

The main problem with the mapped-file approach is that it constrains the number 

of options available for caching and cache consistency; since all reads and writes hap

pen directly to a client's memory, all clients must be allowed to cache files in their 
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memory. This would make it impossible to use Sprite's simple cache consistency algo
rithm, which requires caches to be disabled under some conditions. 

One scheme that keeps mapped file caches consistent without requiring users to 
lock their files is one that has been implemented by Kai Li [Li86]. His scheme provides 
cache consistency at the page level. It is a complex scheme in which each page is 
"owned" by a workstation. Whenever a workstation wishes to read a page that is not 
already in its memory, a copy of the page is fetched from the page's owner. In order to 
modify a page, a copy of the page must be acquired from the owner, and then the 
workstation that is modifying the page becomes the owner of the page. Acquiring own
ership causes the page to be removed from all other workstation's memories. 

Another potential problem with mapped files is that the hardware may make map
ping difficult. Some newer workstations use a virtually addressed hardware cache 
[Hil86, Kel86, SSS85]. These caches do not support synonyms - multiple virtual 
addresses pointing to the same physical address. Thus, if one file system page is 
mapped into two different processes' virtual address spaces at different virtual 
addresses and one process is modifying the page, the hardware will not guarantee that 
the two processes will see a consistent view of the data in the page. Actually, this 
presents a consistency problem similar to the file system consistency problem men
tioned earlier, including problems related to both concurrent and sequential sharing. 
The result is that, on certain hardware, mapped files may introduce additional complex
ity and overhead. 

A third problem with the mapped-file approach is that it treats virtual memory and 
file system data in the same way. Unfortunately, the access patterns of the two types of 
data may be entirely different. For example, file accesses are typically sequential and 
while virtual memory accesses are not. Therefore, it may make sense to use different 
replacement strategies for the two types of data. 

6.3. Sprite Mechanism 

The mapped-file approach that I just described has the nice properties that it pro
vides a single mechanism for accessing file and virtual memory data, and it eliminates 
copy operations. However, because of the potential problems \Vith mapped files, I 
decided to investigate alternative mechanisms for providing variable-sized caches. Th·::: 
mechanism that I developed allows the file system cache to vary in size by having the 
virtual memory system and the file system modules negotiate over physical memory 
usage. The mechanism not only provides variable-sized caches, but it also allows 
Sprite to use a simple cache consistency mechanism, it works well on machines with 
vinually-addressed hardware caches, and it allows Sprite to treat virt'Jal memory and 
file pages differently if that should become necessary or desirable. It has the disadvan
tage that it requires more page copying for I/0 than the mapped-file approach. 

In the Sprite mechanism, the file system module and the virtual memory module 
each manage a separate pool of physical memory pages. Vinual memory keeps its 
pages in approximate LRU order through a version of the clock algorithm [::\el86]. The 
file system keeps its cache blocks in perfect LRU order since all block accesses are 
made through the "read" and "write" system calls. Each system keeps a time-of-
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last-access for each page or block. Whenever either module needs additional memory 
(because of a page fault or a miss in the file cache), it compares the age of its oldest 
page with the age of the oldest page from the other module. If the other module has the 
oldest page, then it is forced to give up that page; otherwise the module recycles its 
own oldest page. This LRU time comparison is done using a simple procedural inter
face between the two modules. 

The approach just described has two potential problems: double-caching and 
multi-block pages. Double-caching can occur because virtual memory is a user of the 
file system: backing storage is implemented using ordinary files, and read-only code is 
demand-loaded directly from executable files [Nel86]. A naive implementation might 
cause pages being read from backing files to end up in both the file cache and the 
vinual-memory page pool; pages being eliminated from the vinual-memory page pool 
might simply get moved to the file cache, where they would have to age for another 30 
seconds before being sent to the server. To avoid these inefficiencies, the virtual 
memory system bypasses the local file cache when reading and writing backing files. A 
similar problem occurs when demand-loading code from its executable file. In this 
case, the pages may already be in the file cache (e.g., because the program was just 
recompiled). If so, the page is copied to the virtual memory page pool, and the block in 
the file cache is given an "infinite" age so that it will be replaced before anything else 
in memory. The page is copied instead of remapped because, as explained below, there 
may be multiple file system blocks per page. 

Although virtual memory bypasses its local file cache when reading and writing 
backing files, the backing files will be cached on servers. This makes servers' 
memories into extended main memories for their clients. 

The second problem with the negotiation between virtual memory and the file sys
tem occurs when virtual memory pages are large enough to hold several file blocks. Is 
the LRU time of a page in the file cache the age of the oldest block in the page, the age 
of the youngest block in the page, or some son of average? Once it is determined 
which page to give back to vinual memory, what should be done with the other blocks 
in the page if they have been recently accessed? For the Sun-3 implementation of 
Sprite, which has 8-Kbyte pages but 4-Kbyte file blocks, I used a simple solution: the 
age of a page is the age of the youngest block in the page, and when a page is relin
quished all blocks in the page are removed. 

I also considered more centralized approaches to trading off physical memory 
between the virtual memory page pool and the file cache. One possible approach would 
have been to implement a centralized physical memory manager, from which both the 
virtual memory system and the file system would make page requests. The centralized 
manager would compute page ages and make all replacement decisions. I rejected this 
approach because the most logical way to compute page ages is different for virtual 
memory than for files. The only thing the two modules have in common is the notion 
of page age and LRU replacement. These shared notions are retained in the distributed 
mechanism, while leaving each module free to age its own pages in the most con
venient way. The Sprite approach also permits the relative aging rates to be adjusted 
for virtual memory and file pages, which we have found desirable. The effect of this 
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adjustment is discussed in Section 6.5. 

6.4. Variable-Size Cache Performance 

The Sprite variable-size cache mechanism will work very well if only file

intensive programs are run, because the cache will be allowed to grow very large. 

Likewise, if users run purely VM-intensive programs, the cache will become small and 

let most of physical memory be used by the vinual memory system. This section looks 

at how well the Sprite variable-size cache mechanism performs when users run both 

file- and virtual-memory-intensive programs. I will use the results from a benchmark 

that is both file- and virtual-memory-intensive to answer the following questions: 

1) How well do fixed-size caches perform with the benchmark? 

2) How do fixed-size and variable-size caches compare? 

3) What is the effect of changes in physical memory size? 

The benchmark that I used is an edit-compile-debug benchmark that runs under 

the X 11 window system on Sprite (see Table 6-1 ). This benchmark represents work 

that is commonly done on Sprite, and is both VM and FS intensive. In order to facili

tate running the benchmark, I modified Sprite so that I could inject mouse events into 

the X11 input stream. Using this feature, I was able to move the mouse around under 

program control and enter commands in various windows; basically, I was able to 

simulate under program control the actions of a normal user of the window system. 

The benchmark was run on a Sun-3n5 client with 16 Mbytes of memory, and the 

server was a Sun-3/180 with 16 Mbytes of memory. The server used an 8-Mbyte cache. 

I varied both the amount of physical memory available on the client and whether or not 

ComQ_onent Description FS I/0 VM Ima2:e Size 

Edit Run window-based editor 70 Kbytes 560 Kbytes 

on 2500 line file. 

Compile Compile VM Module 800 Kbvtes 1 Mbvte 

Link Link the kernel I 8 Mbvtes 3 Mbvtes 

Debu2: Run kernel debu2:2:er I 4 Mbvtes 8.5 Mbvtes 

Environment The X window system plus -- 5 Mbytes 

several typescript 
windows and tools. 

Table 6-1. This table describes each of the components of the edit-compile-debug 

benchmark. The first two columns describe the component of the benchmark. The 

third column gives the amount of bytes read and written by each benchmark step. The 

last column gives the size of the largest virtual memory image of the step. The last 

row is not a step in the benchmark but rather shows the total amount of memory re

quired by the basic environment in which the benchmark is running. 
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the client was using a fixed-size cache or the Sprite variable-size cache mechanism. 

Each benchmark consisted of two runs through the edit-compile-link-debug loop, where 

the benchmark components were run in one of three windows. Each data point was 

taken from the avera£e of three runs of the benchmark. In this section I will onlv 
~ -

present the most important results from the benchma·k; see Appendix C for more 

detailed results including standard deviations. 

6.4.1. Variable vs. Fixed-Size Caches 

The results from Chapter 4 suggest that a large fixed-size cache will provide the 

best performance for file-intensive programs. However, for the edit-compile-debug 

benchmark, the smallest tixed-size cache is best. Figure 6-1 gives the elapsed time and 

server utilization for the benchmark as a function of the amount of physical memory 

available on the client and the size of its file cache. A cache of 0.5 Mbytes provides the 
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Figure 6-1. Elapsed time and server utilization for the edit-co:-npile-debug benchmark 
with fixed-size caches as a function of client physical memory size. In both graphs 
the X-axis is the size of the file cache. In graph (a) the Y -axis is the number of 
seconds to execute the benchmark and in graph (b) the Y -axis is the percent of the 
server's CPU that was utilized while the client was executing the benchmark. The sys
tem thrashed whenever the amount of physical memory left for the vinual memory 
system dropped below 10 ~v1b~tes. I did not run the benchmark for points where 
thrashing occurred (since elapsed time more than doubles), which explains \vhy some 
curves have fewer data points than others. 
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lowest elapsed time, and a cache from 0.5 Mbytes to 1 Mbyte gives the lowest server 

utilization for the benchmark; note that this benchmark is so virtual-memory-intensive 

that even with the largest physical memory the smallest-sized cache is best. 

Figure 6-2 clearly shows why the smallest cache is best for this benchmark (graphs 

of network bytes transferred for the other four memory sizes will yield similar results -

see Appendix C). As the cache grows in size, the number of file system bytes 

transferred drops. However, because the amount of physical memory available for vir

tual memory decreases with the increased file system cache, the number of page faults 

and hence virtual memory system bytes transferred increases. This causes a net 

increase in the number of network bytes transferred and a corresponding increase in 

client degradation and server utilization. 

The results with fixed-size caches clearly demonstrate that there is no one cache 

size that will yield the best performance for both the file intensive programs from 

Chapter 4 and the file and virtual-memory intensive benchmark in this chapter. For

tunately, the Sprite variable-size cache mechanism works well for both types of bench

marks. Figure 6-3 shows that, in tem1s of elapsed time and server utilization, the 

variable-size and fixed-size cache mechanisms provide nearly identical performance. 

The reason why the performance is similar is clearly demonstrated in Figure 6-4, which 
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Figure 6-2. This graph gives the number of Mbytes transferred across the network for 
the edit-compile-debug benchmark with fixed-size caches and 16 :Mbytes of memory 
on the client. The X-axis is the size of the cache and the Y -axis is the number of 
Mbytes transferred. 
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Figure 6-3. Elapsed time and server utilization for the edit-compile-debug benchmark 
with a variable-sized cache and with the smallest fixed-size cache as a function of phy
sical memory size. In both graphs the X-axis is the amount of cache. In graph (a) the 
Y-axis is the number of seconds to execute the benchmark and in graph (b) theY-axis 
is the percent of the server's CPU that was utilized while the client was executing the 
benchmark. 

gives the amount of network traffic. The variable-sized cache gives consistently fewer 

file system bytes transferred than a fixed-size cache, and the fixed-sized cache gives 

fewer virtual memory bytes transferred. However, in terms of overall net bytes 

transferred, the variable-size is slightly better than the best fixed-size cache. Thus, the 

poorer virtual memory performance for the variable-size cache is more than offset by 

the much better file system performance_ 

The measurements from Chapter 4 (see Figure 4-1) and of the file- and virtual

memory intensive benchmark show that the Sprite variable-size cache mechanism is 

uniformly better than any fixed-size cache. ·when file-intensive benchmarks are run, 

the variable-size cache lets the cache get as large as is necessary. However, even when 

file and virtual memory activities are intermixed, the variable-size cache provides per

formance that is at least as good as the performance possible with the optimal fixed-size 

cache. 

6.4.2. l\egotiation Activity 

The edit-compile-debug benchmark shifts between file- and virtual-memory

intensive programs. This requires that there be constant shifts in the allocation of phy

sical memory between the file system and the virtual memory system (see Table 6-2). 

16 



120 
- -+- J\et -variable 

~1 

b --~ ~et- fixed 

y 100 I -- FS - variable 

\ I --- FS- fixed 
\ I -·-+·· VM -variable 

80 \. ---*-· VM -fixed ... , ..... ~ ,-
-.c.. 

60 I 

n 
-~ 'x ':- ""-

I'..._ 

40 ..... --.: 
e 

...... _ 

-·-·-·--20 - ... 
e 
d '·x 

0 
10 II 12 13 14 15 16 

Megabytes on Oient 
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transferred. 

Client :Min Max 
FS Asks VM VM Asks FS 

Mem I Cache Size Cache Size 
I 

i Num Satisfied Num Satisfied 
(Mbvtes) I (Mbvtes) (Mbvtes) 

10 I 0.25 I 5.6 8125 1810 2942 I 1846 ! 

11 0.25 I 6.4 I 7105 1889 ' 2610 1967 1 

12 II 0.25 6.9 I 5840 I 1964 ,..,----'.))) 2075 

14 0.25 8.7 I 4012 1957 I 2669 I 2162 

16 I 0.34 8.8 3652 I 1937 2629 2229 

Table 6-2. Traffic between the virtual memory system and the file system. The first 
column gives the amount of physical memory available on the client. The second and 
third columns give the minimum and maximum cache sizes during the benchmark. 
The fourth and fifth columns are the number of times that the file system asked the vir
tual memory system for the access time of its oldest page and the number of times that 
it was able. to get a page from the virtual memory system. The sixth and seventh 
columns are the same as the previous two, except that they are the number of times the 
vinual memory system asked the file system for memory. 
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The minimum and maximum cache size columns from Table 6-2 show that the file 

cache varied widely in size during the life of the benchmark, going from the minimum 
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possible size (0.25 Mbytes) up to over half the amount of physical memory available. 
As the amount of physical memory increased, the maximum size of the cache increased 
as well; the variable-size cache mechanism allowed the file system to take advantage 
of the extra physical memory. 

Table 6-2 also shows the amount of negotiation that went on between the virtual 
memory system and the file system. As the amount of physical memory increased, the 
number of times that the file system attempted to get memory from the virtual memory 
system dropped dramatically; however, the number of times that the file system was 
successful in stealing a page from the vinual memory system remained fairly constant 
across all memory sizes. In contrast, the number of requests for memory made by the 
vinual memory system to the file system remained reasonably constant for all memory 
sizes, but the virtual memory system was more successful in taking pages from the file 
system as the amount of memory increased. 

Table 6-2 suggests that the virtual memory system is much less elastic in its needs 
than the file system, at least for this benchmark; I hypothesize that this is true in gen
eral. The low success rate that the file system has when asking the virtual memory sys
tem for memory implies that the pages in the vinual memory system are being more 
actively used than those in the file system. Thus, the virtual memory system has fairly 
strict memory needs regardless of the physical memory size, and it actively uses the 
pages that it has. The file system, on the other hand, because it caches files after they 
are no longer being used, will grow to fill the available memory. Since to/ohfile system 
does not actively use many of its cached pages, its pages are the best candidates for 
recycling. 

6.5. Penalizing the File System 

The Sprite variable-size cache mechanism that I have described so far treats vir
tual memory and file system data the same; it is basically a global LRU mechanism 
where all pages are ordered by their LRU times. However, the two types of data are 
actually quite different. The sequential nature of file accesses [Ous85] means that a low 
file hit ratio should have a much smaller impact on system performance than a low 
virtual-memory hit ratio. Also, the level of interactive response relies almost entirely 
on virtual memory system performance, not on the performance of the file system. In 
this section I will investigate the effect on both overall and interactive performance of 
giving the virtual memory system priority over the file system. 

The method that I developed to bias against the file system involves adding a fixed 
number of seconds to the reference time of each virtual memory page. This makes each 
virtual memory page appear to have been referenced more recently than it actually was. 
For example, if 5 minutes is added to the reference time of each virtual memory page, 
then the file system will not be able to take any page from the vinual memory system 
that has been referenced within 5 minutes of the oldest file system page. 

After implementing this simple mechanism for penalizing the file system, I wanted 
to see what effect it had on system performance. I first measured its effect using the 
same benchmark and configuration that I used in the previous section. I tried penaliz
ing the file system from 60 seconds up to 960 seconds (longer than the life of the 



E 
1 
a 
p 

e 
d 

T 

m 

e 

1000 25 

900 s 
e 

800 20 
v 

700 e 

600 15 
c 

500 ·---·---- ~o penalty ----+---- ;-\o penalty 

---+-- 60 Second ---+--· 60 Second 
400 - --+- 120 Second 

10 ---+- 120 Second 

300 ----+-- 2-W Second 
z ----+-- 240 Second 

----X---- 480 Second ----X---- 480 Second 

200 ---X---- 960 Second 5 ---X--·· 960 Second 
0 

100 n 

0 0 
10 11 12 13 14 15 16 10 11 12 13 14 15 

Megabytes of Memory ~1egabytes of Memory 

(a) (b) 

Figure 6-5. Elapsed time and server utilization with various penalties as a function of 
client physical memory size. In both graphs the X-axis is client memory size. In 

graph (a) the Y -axis is the number of seconds to execute the benchmark and in graph 
(b) the Y -axis is the percent of the server's CPU that was utilized while the client was 
executing the benchmark. 
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benchmark). In this section I will present only the most important results from the 

benchmark; see Appendix C for detailed results. 

The results of this benchmark indicate that penalizing the file system has little or 

no effect on overall performance. Figure 6-5 shows that, regardless of the penalty, the 

elapsed time and server utilization are about the same. Figure 6-6 shows why the 

penalty has no effect. As the penalty is made larger, the virtual memory performance 

gets better and the file system performance worse. The result is that overall perfor

mance is about the same regardless of the penalty. 

16 

The interactive component of the edit-compile-debug benchmark is small; most of 

the time is spent in debugger initialization and in the compiler and linker. As a result, it 

cannot be used to provide a good measurement of the effects of the file system penalty 

on interactive response. In order to look at the impact of penalizing the file system on 

interactive response, I developed a benchmark which simulates concurrent interactive 

and file system activity; I will call this benchmark the IFS benchmark. The interactive 

component of the benchmark is a program which periodically touches many pages in its 

vinual address space. This simulates a user who is interacting with a program. Each 

time a user interacts with a program, the program must have its code, heap and stack 

pages memory-resident in order to give good interactive response. In fact, if the user is 

interacting with a program under a window system such as Xll, then several programs 
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Figure 6-6. These graph gives the number of Mb)1es transferred across the network 
with various penalties as a function of client memory size. In all three graphs the X
axis is the amount client memory and the Y -axis is the total number of .Mbytes 
transferred during the benchmark. Graph (a) is vinual memory traffic, (b) is flle sys
tem traffic and (c) is total network traffic. 

may have to be memory-resident in order for the user to get good interactive response. 
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The file system component of the IFS benchmark is the Sort benchmark that was 
described in Chapter 4. I chose Sort because it is the benchmark that is most sensitive to 
changes in the file system cache size; of all benchmarks, its performance is most likely 
to degrade if the file cache size is reduced. The Sort program is run concurrently with 
the interactive program to simulate a file system program that attempts to grow its 
cache by stealing memory from an interactive program. Penalizing the file system 
should prevent Sort from stealing memory away from the interactive program, but it 
may cause the Sort program to degrade in performance. 

The configuration that I used was an 8-Mbyte Sun-3n5 client and a 16-Mbyte 
Sun-3/180 server. 1.3 Mbytes of the 8 Mbytes on the client are used by the kernel, 
which leaves 6.7 Mbytes for user processes. I made the interactive program use 5.7 
Mbytes of memory and left at most 1 Mbyte for Son and the file system cache. I left 
only 1 l\lbyte for Son so that Sort will contend with the virtual memory system for 
memory. 

The percentage of memory that the interactive program dirties each time it touches 
the memory in its address space may impact the performance of the IFS benchmark. In 
order to approximate the percentage of memory that an average program dirties, I meas
ured the amount of dirty memory on 5 workstations running Sprite. Between 40 and 60 
percent of the memory that was being used by user processes was diny on these 
machines. Because of this result, I made the interactive component of the IFS bench
mark dirty half of the memory that it touches. 

Tables 6-3 and 6-4 show the impact of the file system penalty on the performance 
of the IFS benchmark. Table 6-3 shows that, when the file system is not penalized, the 

Sleep :t"\o penaltY I PenaltY 
Response Time li Sort Time Response Time i: Sort Time 

Interval 
,, 

Min I Max I Avl! Jl Time I Del! Min I Max I AYI! 1: Time I Del! 
1 I 0.0 4.7 I 0.1 II 79.6 I 33% 0.0 I 0.4 I 0.03 II 74.8 I 25% 

5 I 0.0 4.5 I 0.8 II 83.8 i 40% I 0.0 I 0.1 I o.o2 I! 72.8 I 21 sc 
10 1.9 13.3 I 5.9 II 103.4 I 72% ,, 0.0 I 0.1 I 0.01 II 72.1 I 20% 
30 I 12.5 22.0 I 15.8 11 96.3 I 61 o/c II o.o i 0.1 ' 0.03 1

1 74.0 I 23% I I ' 

Table 6-3. Response time and elapsed time for the IFS benchmark. Each data point is 
the average of the results from three runs of the benchmark. The ftrst column gives the 
number of seconds that the interactive benchmark slept before touching all of its 
memory. Columns 2 through 6 give the results when the file system was not penal
ized. Columns 2 through 4 give the minimum, maximum and average number of 
seconds it took the interactive benchmark to touch all of its memory when it awoke 
from its sleep. Columns 5 and 6 give the total number of seconds it took to execute the 
Son benchmark, and the amount of degradation relative to the best case given in 
Chapter 4 (60 seconds). The last five columns are the results when the file system was 
penalized by 120 seconds. 
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response time has a high variance. Sometimes it is :1stantaneous and other times it can 

take up to 22 seconds. The response time gets worse when the interactive program 

touches memory less frequently. Short sleep intervals correspond, for example, to tem

porary pauses in an editing session. Longer sleep intervals correspond, for example, to 

windows that have been idle because the user was working in a different window. 

Longer sleep intervals allow the sort program to steal more memory (see Table 6-4). 

This causes the interactive program to wait for pages to get faulted in from the file 

server. 

Table 6-3 shows that, when the file system is penalized, the interactive response is 

excellent. The 120-second penalty prevents the file system from taking any memory 

away from the virtual memory system. Thus, regardless of the amount of time that the 

interactive program pauses between successive touching of its memory, the response 

time is the same. 

Surprising, the file system penalty actually improves the execution time of the Sort 

benchmark (see Table 6-3). Without the penalty, the benchmark takes up to 72% 

longer to execute than the best case given in Chapter 4. The performance degrades 

because the CPU is busy trying to fault in pages for the interactive benchmark; if the 

interactive benchmark is memory resident, then it utilizes very little of the CPU. When 

the file system is penalized, Sort takes only 25% longer than the best case. This degra

dation is nearly identical to the degradation shown in Chapter 4 when Sort was run 

using only a small cache. 

As I mentioned earlier, I had the interactive component of the IFS benchmark 

dirty half of its memory. In order to determine the effect of the amount of dirty 

memory, I ran the IFS benchmark where it only dirtied 10% of its memory (see Table 

I 

Sleep ~o penaltv I, Penal tv li 

Interval 
Faults I Page I Cache Size II Faults I Page I Cache Size 

Total I Swan I Outs I Min I Max 11 Total I Swan l Outs ! :tv1in I r-.rax 
1 i 1217 173 I 456 I 152 I 784 li 783 I 1 I 4 I 64 I 178 
5 i 1261 437 I 509 I 157 1 842 I! 781 i 0 1 0 1 64 168 

I 

10 2~81 1605 I 1177 1 146 i 1226 li 781 I 0 i 0 I 64 168 
30 I 2097 1250 I 983 I 141 i 2533 il 782 I 0 I 0 I 64 168 

Table 6-4. Cache size and page fault behavior for the IFS benchmark. Each data 
point is the average of the results from three runs of the benchmark. The first column 
gives the number of seconds that the interactive benchmark slept before touching all of 
its memory. Columns 2 through 6 give the results when the file system was not penal
ized. Column 2 is the total number of page faults that occurred, Column 3 is the 
number of faults from swap space, Column 4 is the number of pages that were written 
to swap space and Columns 5 and 6 give the minimum and maximum amount of 
memory in Kbytes that was resident in the cache during the benchmark. The last five 
columns are the results when the file system was penalized by 120 seconds. 
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6-5). A comparison of Tables 6-3, 6-4 and 6-5 shows that the amount of dirty memory 

has only a very minor impact on the performance of the IFS benchmark. 

The results of the benchmarks in this section show that penalizing the file system 

can improve interactive response without degrading overall system performance. In 

some cases, it can even make the performance of both file- and virtual-memory inten

sive programs better. However, it is not clear what the optimal penalty should be. The 

penalty should be large enough so that idle user programs that will be used in the near 

future will not get removed from memory, but not so large that the performance of the 

file system is degraded unnecessarily. The best value for the penalty will depend on the 

behavior of the users of the system. In Sprite we normally set the penalty to 20 

minutes. This means that an interactive program's pages will not be reclaimed by the 

file cache until the program has been idle for 20 minutes. 

6.6. Comparison to Mapped Files 

One of the disadvantages of the Sprite variable-size cache mechanism is that it 

requires that data be copied between the user and kernel virtual address spaces during 

I/0. For example, when a user reads data from a file, the data is copied from the file 

system cache into a buffer in the user's address space. Mapped files eliminate these 

copy operations at the expense of an extra mapping cost. Table 6-6 contains the 

approximate performance penalty for using the Sprite mechanism instead of mapped 

files on the 5 benchmarks from Chapter 4. The results in Table 6-6 are a worst-case 

approximation of the Sprite penalty because they were calculated under the assumption 

that reads and writes are free under the mapped file scheme. The client degradation of 

Sleep Response Time I Sort Time Faults I Page I Cache Size 
I 

Interval 1 Min ~!ax A VI! I Time De~r I Total I Swap I Outs I Min I Max 

1 i 0.0 7.3 o.1 I 77.3 29% 1111 I 157 i 353 I 186 I 845 

5 I 0.0 5.4 0.8 I 80.7 35% 1206 I 399 I 446 I 186 I 925 

10 ! 0.0 I 11.8 7.1 I 100.7 68% 2431 1576 I 890 ' 178 I 1245 l 

30 I 12.3 I 23.0 17.7 I 89.8 50Cfc 1889 i 1088 I 798 i 128 I 2621 
I 

I 

Table 6-5. Results from the IFS benchmark when only 109c of memory was dirtied 

and no penalty was used. Each data point is the average of the results from three runs 

of the benchmark. The first column gives the number of seconds that the interactive 

benchmark slept before touching all of its memory. Columns 2 through 4 give the 

minimum, maximum and average number of seconds that it took the interactive bench

mark to touch its memory when it awoke from its sleep. Columns 5 and 6 give the total 

number of seconds that it took to execute the sort benchmark and the amount of degra

dation relative to the best case given in Chapter 4 (60 seconds). Column 7 is the total 

number of page faults that occurred, Column 8 is the number of faults from swap 

space, Column 9 is the number of pages that were written to swap space and Columns 

10 and 11 give the minimum and maximum amount of memory in Kbytes that was 

resident in the cache during the benchmark. 



Benchmark 
Mc~rabytes Seconds 

Degradation 
Read Written Total Read Written Total 

Vm-make I, 9.20 2.39 11.59 3.31 1.14 I 4.45 1.5% 

Andrew ! 7.62 3.12 10.74 I 2.74 1.48 I 4.22 1.6% 

Sort 2.70 2.70 5.40 0.97 1.28 I 2.25 4.0% 

Diff 2.00 0.00 2.00 II 0.72 0.0 I 0.72 19.1% 

Ditroff 0.69 0.79 1.48 0.25 0.38 I 0.63 I 0.5% 

Table 6-6. Cost of not using mapped ftles. The first column identifies the benchmark, 
the second column the total number of Mbytes read and written during the life of the 
benchmark, the third column the approximate number of seconds spent reading and 
writing the data and the last column the degradation of the benchmark compared to 
free reads and writes (no copying). The time spent copying was computed by taking 
the amount of data that was read and written, dividing it into 4 Kbyte blocks (the file 
system block size), and then multiplying it by the time to read and write 4 Kbyte 
blocks. On Sprite, 4-Kbyte data blocks can be read and written at rates of 2,912,711 
bytes/second and 2,207,528 bytes/second respectively, or approximately 350us per 
Kbyte read and 463us per Kbyte written. Note that the reading and writing speeds 
given here are less than the ones given in Table 4-2 in Chapter 4. This is because the 
speeds in Chapter 4 were measured with larger blocks to get the maximum possible 
throughput. 
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Sprite's scheme in comparison to a mapped-file scheme ranges from 0.5 to 19.1 per
cent. However, except for the highly input-intensive Diff benchmark, the highest 
degradation is only 4.0% and the average is only 1.9%. Thus, the extra copying with 
the Sprite mechanism has only a small effect, except for highly I/O-intensive bench
marks such as Diff. 

6.7. Summary and Conclusions 

In this Chapter I have demonstrated the effectiveness of variable-size file caches. 
Variable-size caches allow the amount of file data to grow for file-intensive programs, 
yet they work just as well as fixed-size caches for mixtures of file- and virtual-memory 

intensive programs; there is no fixed-size cache that can out-perform a variable-size 
cache. 

I have also shown that a simple variable-size cache can be built that is not based 
on the mapped-file paradigm. The Sprite variable-size cache mechanism works by hav

ing the virtual memory system and file system negotiate over the use of physical 
memory. This allows Sprite to use a simple cache consistency mechanism and incurs 
no extra overhead on machines that make mapping expensive. The extra copying cost 
required in Sprite over mapped file schemes is small and does not noticeably degrade 

client performance over mapped-file schemes; if the mapping cost is high enough, then 
the Sprite mechanism will outperform mapped-file schemes. 

The Sprite variable-size cache mechanism allows the file system to be penalized 

so that it will be more difficult for the file svstem to take memorv from the virtual . -
memory system. The use of the penalty appears to be effective in improving interactive 
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response without degrading file system performance. The optimal value of the penalty 

is not yet clear; how much to penalize the file system will depend on the behavior of the 

users of the system. 
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CHAPTER 7 

Copy-on- \Vrite For Sprite 

7.1. Introduction 

In systems that create new processes by forking, one of the major costs of process 
creation is copying the address space from the parent to the newly created child. A 
common method of improving the performance of process creation is by using copy
on-write: pages in the address space are initially shared by the parent and child; a page 
is not actually copied until one of the processes attempts to modify it. Copy-on-write 
saves not only copying of pages in memory, but also copying of pages that are on back
ing store. Copy-on-write has been implemented in several systems, with the earliest 
being TENEX [BBM72, Mur72] and one of the most recent being Mach [Ras87]. 

This chapter describes a simple copy-on-write mechanism that I have imple
mented as part of Sprite. It differs from other copy-on-write mechanisms in that it is 
actually a combination of copy-on-write (COW) and copy-on-reference (COR); for 
each page that is involved in copy-on-write activity, one segment has it copy-on-write 
and all other segments that reference it have it copy-on-reference. I chose the COW
COR mechanism for two reasons: virtually-addressed caches and simplicity. The 
SPUR hardware [Hil86], which is one of Sprite's target machines, uses virtually
addressed caches that do not provide efficient support for copy-on-write; expensive 
cache flushing operations are required in order to implement copy-on-\vrite on a SPUR. 
As I will explain later, the Sprite COW-COR scheme can be implemented on architec
tures such as a SPUR with less cache flushing overhead than a pure copy-on-write 
scheme. 

The other major reason for using the Sprite scheme was simplicity. One of the 
major complexities of copy-on-write is handling the tree of descendants that results 
from a single parent. In the Sprite scheme, this potentially-complex tree structure is 
represented by a simple linear list. This simplification and others made the addition of 
copy-on-write to Sprite an easy task; the implementation was completed in less than 
one man-week. 

In order to compare the Sprite CO\V-COR scheme to copy-on-fork schemes, I 
measured the performance of the Sprite COW -COR scheme by running benchmark pro
grams against Sprite and by monitoring normal use of the system. The measurements 
indicate that the CO\V-COR mechanism can potentially improve fork performance over 
copy-on-fork schemes from 10 to 100 times depending on whether pages are resident in 
memory or on backing store. However, during normal use, the COW-COR mechanism 
provides a much smaller benefit: less than 30 percent of page copy operations are elim
inated. Also, the 70% of the pages that are copied are copied at the expense of extra 
page faults. With the Sprite implementation, the overhead of handling the additional 
page faults results in worse overall performance than copy-on-fork; a more optimized 
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implementation could provide more than a 20% improvement in performance over 

copy-on-fork. A pure copy-on-write scheme would eliminate 10 to 20 percent of the 

page copy operations required under COW-COR, and would provide up to a 20% 

improvement in fork performance over COW-COR. However, because of extra cache
flushing overhead on machines with virtually-addressed caches, copy-on-\vrite may 

have worse overall performance than COW -COR on these types of machines. 

The rest of this Chapter is organized as follows: Section 7.2 gives a brief overview 
of the Sprite virtual memory system; Section 7.3 discusses previous work and Mach in 
particular; Section 7.4 describes the Sprite copy-on-write mechanism; Section 7.5 com

pares the Sprite scheme to a pure copy-on-write scheme; and Section 7.6 gives meas
urements of the perfom1ance of the Sprite scheme. 

7.2. Sprite Virtual Memory 

A Sprite process's virtual address space is divided up into three segments: code, 
heap and stack. Each segment has its own page table that describes the segment's vir
tual address space, and each segment has its own file that is used for backing store. 

Segments can be shared by different processes. When a process is forked using a 
copy-on-fork mechanism, a) the child will share the parent's code segment read-only, 

b) the child is given a copy of the stack segment, and c) the heap segment is either 
write-shared or a copy of it is given to the child. A copy-on-write mechanism has the 
potential of saving the actual copying of pages in the stack and heap segments. 

The most common scenario where copy-on-write may be helpful is the fork-exec 

sequence. This is the case where a parent creates a child with the fork system call and 
then the child immediately replaces the address space that it shares with its parent with 

a new address space with the exec system call. This happens, for example, in the Ul\TIX 
shells for each command executed. If neither the parent nor the child modify many 

pages between the fork and the exec, then copy-on-write may be able to save many page 
copy operations. 

7.3. Previous ~·ork 

The original idea of copy-on-write emerged over 15 years ago with TEI'\EX 

[BBM72, Mur72]. Since then it has been implemented in several systems 

[Akh87, GI--.1S87, Ras87, SCC86]. The Mach operating system [Ras87] is one of the 

most recent systems to implement copy-on-write, and is one of the few whose imple

mentation of copy-on-write has been published in detail. Copy·-on-write is an integral 

part of Mach; it is the basis for both efficient message transmission and efficient process 

creation. This section briefly describes the Mach implementation of copy-on-write as it 
pertains to process creation. 

A l\lach process's address space is defined by an address map which is a linked 

list of references to memory objects. When a process forks, the memory objects are 

"copied" using copy-on-write. This is done by making the address maps of the parent 

and child point to the same memory objects. When a page in the copied memory object 

is written, a new page is given to the process that wrote the page. In order to hold new 

pages that are copied because of a copy-on-write fault, Mach creates an object called a 
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Figure 7-1. Mach copy-on-write. In (a) process PI forks creating process P2. They 
both share object 01. In (b) PI modifies a page and gets a shadow object to hold the 
modified page. PI's address map points to the shadow object which in tum points to 
the original object. In (c) P2 exits leaving Pl with the chain of two objects. In (d) PI 
forks P3. They both share the object 01 and the shadow object S 1. In (e) PI modifies 
a page in either 01 or SI and gets a new shadow object S2. !\ow P2 has a chain of 3 
objects: two shadow objects and the original object. When P3 exits in (f), P 1 is still 
left with the 3 objects. However, by recognizing that the shadO\.V objects completely 
overlap the original object, the extraneous shadow objects can be eliminated. 

shadow object. Those pages that are modified are copied to the shadow object and 
unmodified pages are kept in the original object; pages only have to be copied if they 
are modified. 

The complexity that arises in the Mach scheme is that a shadow object may itself 
be shadowed as a result of a copy-on-write copy operation. This can result in an entire 
chain of shadow objects being created (see Figure 7-1 ). In order to satisfy a page fault, 
the list of shadow objects and then possibly the original object need to be searched to 

find the data for the page. Much of the complexity involved in ).1ach memory manage
ment is involved in preventing long chains of shadow objects [Ras87]. In particular, 
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the extraneous shadow objects shown in Figure 7-1 that are left over after a child exits 
can be eliminated by moving the pages in the shadow objects into the original object. 

7.4. Sprite CO,V-COR 

The Sprite copy-on-write scheme was designed with a more restrictive set of goals 
than Mach's. The goals behind the Sprite design were: 

• To make process creation efficient in a UNIX-like environment. 

• To be able to run as efficiently as possible on machines such as a SPUR that have 
virtually-addressed caches. 

• To yield as simple an implementation as possible. 

In particular, Sprite's copy-on-write scheme does not participate in the implementation 
of message communication; this simplified the design constraints in comparison to 
Mach. 

7.4.1. Overview 

Sprite uses a combination of copy-on-write and copy-on-reference, as illustrated in 
Figure 7-2. For each page that is involved in copy-on-write activity, one segment 
(called the master segment) has the page marked copy-on-write and all other segments 
that reference the page (called slave segments) have it marked copy-on-reference. 
When a process forks, the segment in the parent process becomes the master segment 
and the segment in the child becomes the slave segment. All pages in the master seg
ment are marked copy-on-write and made read-only. All pages in the slave segment are 
marked copy-on-reference and made inaccessible. 

A copy-on-reference fault occurs when a copy-on-reference page is referenced. 
When the fault occurs, the master copy-on-write page is located, and a copy is made for 
the slave segment. In order to allow the master copy of the page to be easily located, 
the page table entry for each copy-on-reference page names the master segment for the 
page (as shown below, different pages may reference different master segments). 

\Vhen a process attempts to modify a copy-on;write page (call it A), a copy-on
write fault occurs. A copy-on-write fault is more complex than a copy-on-reference 
fault because a new copy-on-v.·rite master segment for the page must be found so that 
the master segment can modify its copy of the page. This new copy-on-write master 
must be one of the slave segments. In order· to allow a slave segment to be easily 
located, the master segment and each of its slave segments are linked together in a list; 
a master can have multiple slave segments if a parent forks multiple children. The new 
master segment is found by searching the list of segments for a slave segment that con
tains a page that is copy-on-reference off of A. This slave segment is given a copy-on
write copy of A (call it B). All of the remaining segments that have pages that were 
copy-on-reference off of A must now be changed to reference B as their master. This is 
done by searching the list and updating the page table entries of each segment that was 
copy-on-reference off of A to point to the new master segment. 

\Vhen a segment is deleted because a process exits or execs, copy-on-write depen
dencies in the deleted segment need to be eliminated. Pa~;:s that are copy-on-write 



Pl P2 P3 

Segment I I Segment 2 I Segment 3 I I 

(a) Fork: 
~ext seg [0 ~ext seg lo ~ext seg lo 
Page table [O Page table to Page table lo 

c::_ ~ ~ 
Resident, COW COR, Master seg = 1 COR, ~laster seg = 1 

On backing store, COW COR, ~1aster seg = I COR, ~1aster seg = 1 

Pl P2 P3 

Segment I I Segment 2 : Segment3 I 
[v lo 

I 

~ext seg ~ntseg ~ext seg 10 

(b) COR Fault: 
Page table [Q Page table IO Page table iO 
~ ~ ~ 

Resident, COW COR, Master seg = l COR, Master seg = l 

On backing store, COW COR, ~1aster seg = l Resident 

Pl P2 P3 

Segment 1 Segment 2 Segment 3 I 
~ext seg 0 ~ext seg :o ~ext seg lo 

(c) COW Fault: 
Page table IO Page table 10 Page table 10 

r--' r--' r--' .. 
Resident Resident, COW COR, ~1aster seg = 2 

On backing store, COW COR, :-.1aster seg = l Resident 

Figure 7-2. Sprite copy-on-write. In (a) the process (Pl) that owns segment 1 forks 
two children and creates two copy-on-reference copies, segments 2 and 3, which .are 
owned by processes P2 and P3 respectively. The page table entry (PTE) for each of 
the COR pages names the segment with the COW copy. In (b) P3 references the 
second page in segment 3 and a copy of the page is loaded into segment 3 from S 1 's 
swap file. The copy is made readable and writable. In (c) P1 modifies the first page in 
segment 1 and gives a new COW copy to segment 2. Segment 3 's PTE is updated to 
point to segment 2 and segment 1 's page is made readable anJ writable. 
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must be copied to another segment. Each copy-on-write page (call it A) in the deleted 
segment is copied to another segment that contains a page (call it B) that used to be 
copy-on-reference off of A. If A is resident in memory, this is done by remapping the 
page in A onto B. Otherwise, the backing store for A is ccpied to B 's backing store. 
Copy-on-reference pages in the deleted segment are ignored; this may cause extraneous 
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copy-on-write page faults and is discussed below. Once all cor:.r-on-write dependen
cies are eliminated, the segment is deleted from the linked list. 

7.4.2. Trees of Descendants 
The previous section only mentioned COW-COR for a single parent with multiple 

children. However, if processes with copy-on-write slave segments fork, then a tree of 
copy-on-write and copy-on-reference relationships will result. Rather than build a 
tree-like data structure to represent the relationships, Sprite puts all of the related seg
ments in the same linked list. This can be done because the page table entry for each 
copy-on-reference page names the segment that contains the master copy. This pro
vides a simpler implementation and is based on the assumption that the lists will rarely 
contain more than a few segments. The lists should be short because in a UNIX-like 
environment processes normally replace their address space by calling the exec system 
call soon after they are created; the benchmark results in Section 7 .6.2 validate this 
assumption. 

One difference between the Sprite and Mach mechanisms is that, when a page 
fault of any type occurs, the location of the master copy of the page is immediately 
known; no chain of objects needs to be traversed. However, Sprite does need to 
traverse its linked list of segments for other reasons, as described above and below. 

7.4.3. Eliminating Extra Copy-on."Write Faults 

After a segment is deleted, or a copy-on-write fault or a copy-on-reference fault is 
handled, there can be pages marked copy-on-write for which there is no longer a 
corresponding copy-on-reference page. The easiest method of handling this problem is 
to cleanup extraneous copy-on-write pages when they are faulted on. However, 
because a copy-on-write fault is fairly expensive, the Sprite implementation of COW
COR checks for the common causes of extra faults and eliminates them. For example, 
after a copy-on-reference fault is handled on a page, the master may be the only seg
ment that references the COW copy of the page; this case is detected and the page is 
made writeable by the master. 

Another common cause of extra page faults is segment deletion. After a copy-on
reference segment is deleted, the master may be the only segment left in the list of 
copy-on-write and copy-on-reference segments. Since, as explained above, copy-on
reference pages in a deleted segment are ignored, this potentially leaves copy-on-write 
pages for which there is no copy-on-reference page. However, this case is detected and, 
when there are no longer any slaves off of a master, all of the pages in the master are 
made writeable. 

7.4.4. Backing Store 

The backing store for each copy-on-write page is the master segment's backing 
store file. When a copy-on-reference fault occurs for a page that is on backing store and 
not resident in memory, the page is read from the master segmer.t's backing store file. 
Copy-on-\vrite faults can only occur to pages that are memory resident. If a process 
attempts to modify a copy-on-write page that is not memory resident, then a normal 
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page fault occurs instead of a copy-on-write fault. Once the faulting process continues, 

it will try to modify the now-memory-resident page and a true copy-on-write fault will 
occur. This second fault could be eliminated by slightly complicating the implementa
tion, but the cost of the extra fault is very small in comparison to the cost of loading a 

page from backing store. 

7.5. Comparison of Sprite Scheme and Shadow Objects 

Besides using a combination of copy-on-write and copy-on-reference instead of 
pure copy-on-write, the major difference between Sprite and Mach is that Sprite does 

not use shadow objects. The method that Sprite uses to implement COW -COR could 

alsCl be used to implement a pure copy-on-write scheme. The difference would be that, 
when a process forks, each memory resident page would be marked copy-on-write in 
both the parent and the child segment's page tables, instead of copy-on-write in the 
parent and copy-on-reference in the child. For pages that are only resident on backing 

store, the page table entry of the child would be used to point to the parent segment 

since the parent has the swap file. 

The main advantage of the Sprite method of implementation of copy-on-write is 

that it eliminates the potential to create chains of extraneous objects. For example, Fig

ure 7-3 shows what happens under the Sprite scheme when a parent forks a child, the 
parent modifies a page, and then the child exits. The result is that, after the child exits, 
the Sprite scheme automatically cleans up the list; there are no extra structures to main

tain or collapse. 

The disadvantage of the Sprite scheme is that it can require extra copying of pages 
when a parent exits before its child exits. With shadow objects, no copy operations are 

required when a process exits, because shadow objects can exist even after the process 
that created them has exited. However, under the Sprite scheme, when a segment is 

deleted, all copy-on-write pages must be copied to another segment. In a normal U!\1X 

environment parents usually wait for their children to exit, so in practice the Sprite 

scheme should perform as well as the shadow object scheme. 

7.6. Copy-on-'Vrite Performance 

I ran benchmark programs and measured normal use of Sprite in order to answer 

several questions about the performance of the Sprite COW-COR scheme: 

• What is the maximum potential benefit from COW-COR, compared to no copy
on-write mechanism at all? 

• \Vhat is the actual benefit from COW -COR during normal use, compared to no 

copy-on-write mechanism at all? 

• How does CO\V-COR compare to a pure copy-on-write scheme? 

• How much more efficiently can COW-COR be implemented on a SPUR than a 

pure copy-on-write scheme? 

The benchmark programs are Ul\1X programs that have been com·ened to run on 

Sprite, and the results obtained from the measurements of Sprite should be applicable to 

any U:t'-.1X-lik:e operating system. The measurements were taken on a Sun-3;75 
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Figure 7-3. In (b) the process (call it PI) that owns segment I forks a child and creates 

a copy-on-reference copy, segment 2, which is owned by process P2. In (c) PI 

modifies one of the copy-on-write pages in segment I and gives a copy of the page to 

segment 2. In (d) P2 exits causing segment 2 to be deleted. When segment 2 is delet

ed, it is removed from the list and the lone copy-on-write page left in segment I is 

made readable and writable. The result is that the state of segment 1 is restored back 
to how it was in (a); that is, the state before segment 1 was created. 

workstation with 16 Mbytes of memory, 8-Kbyte pages and about 2 }.1IPS processing 

power. The Sun-3ns does not have a CPU cache. 

7.6.1. Raw Performance 

I used a simple benchmark to determine the maximum benefit attainable from 

COW-COR during process creation. This benchmark forks a child and then waits for 

the child to exit. The amount of memory that the parent has resident in memory or on 

backing store when it does the fork can be varied. It is an optimistic measurement of 

the benefit of copy-on-write because none of the pages are referenced or modified by 

the parent or the child. Table 7-1 gives the results. 



COW-COR Copv-on-Fork 

Kbvtes I Mem-res Backin£ Store I Mem-res Backin£ Store 

0 I 22.8ms 22.8ms 22.5ms 22.4ms 

64 24.7 24.0 59.7 171.7 

128 25.8 24.3 79.6 265.0 

256 28.0 24.6 119.4 457.6 

512 ':\} ,.., 
- -.:J 25.3 199.0 850.8 

1024 41.1 26.8 358.6 1635.1 

2048 58.7 29.7 677.2 3209.0 

Table 7-1. Raw Sprite COW-COR performance. This table gives the time in mil
liseconds required per execution of a fork and wait call in the parent and an exit call in 
the child as a function of segment size. These measurements were taken on a Sun-
3/75. The first column gives the number of Kbytcs that were either memory resident 
or on backing store when the parent forked. The second and third columns are the per
formance with COW-COR and the fourth and fifth columns are without COW-COR 
(i.e., all of the data had to be copied at fork time). "Mcm-rcs" means that all of the 
bytes were memory resident and "Backing Store" means that all of the bytes were on 
backing store. 
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There are two interesting results from this benchmark. First, forks are substan

tially faster under the COW-COR scheme than they are with copy-on-fork schemes: 

more than 10 times faster for processes with large amounts of resident memory and 

more than 100 times faster for processes with large amounts of memory on backing 

store. Thus, as expected, if processes with large amounts of memory fork and do not 

reference many pages, copy-on-\\Tite can substantially improve fork performance. 

Second, it is slower to fork a process when all of its pages are memory resident than 

when all of its pages are on backing store. This is because the hardware protection 

must be changed to make memory resident pages copy-on-write. 

7 .6.2. Realistic Performance 

The benchmark described in the previous section gave a best-case scenario for the 

COW -COR mechanism: a large process forks and does not reference any of its 

memory. In order to make a more realistic determination of the benefits of the COW

COR mechanism over traditional copy-on-fork schemes, I measured a file system 

benchmark program, an edit-compile-debug benchmark and several days' work of two 

different Sprite designers. Table 7-2 describes the benchmarks and Table 7-3 gives the 

results. 

One interesting result from Table 7-3 is that the number of times pages were 

marked copy-on-write was about the same as the number of times pages were marked 

copy-on-reference. This implies that in general there is only one segment ti1at has any 

given page mapped COR; if multiple segments had pages mapped COR, then there 
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Benchmark Description 

Andrew Copy a directory hierarchy containing 70 
files and 200 Kbytes of data; examine the 
status of every file in the new subtree; read 
every byte of the files; compile and link 
the files. Developed by M. Satyanarayanan 
for benchmarking the Andrew file system; 
see [HOWA87] for details (same as used in Chapters 4 and 5). 

ECD An edit-compile-debug benchmark run under 
the X 11 window system (same as used in Chapter 6). 

User-A Several days' work of a Sprite system designer 
using Emacs under the Xll window system. 
Work involved editing, compiling and other 
miscellaneous activities. 

User-B Several days' work of a Sprite system designer 
using typescript windows and a window-based 
editor under the X 11 window system. Work 
involved editing, compiling, debugging and 
other miscellaneous activities. 

Table 7-2. Sprite COW-COR benchmarks. 

would have to be more copy-on-reference pages than copy-on-write pages. Therefore, 

the COW-COR lists should normally contain only two segments and the extra overhead 

required to traverse the list on copy-on-write and copy-on-reference faults should be 

small. 

Perhaps the most interesting result in Table 7-3 is that, under normal use, COW

COR saves less than 30% of the page copy operations that would be required under a 

copy-on-fork scheme. Furthermore, copy-on-\\Tite schemes require additional page 

faults that would not occur otherwise; as the cost of a page fault increases, the benefits 

of COW-COR will diminish. I determined from measurements of Sprite that a page 

fault takes 1.1 milliseconds on a Sun- 3!7 5 workstation. In addition, from Table 7-1 it 

can be calculated that the cost of a copy operation is approximately 2.5 m1lliseconds. 

Thus, in Sprite a page fault costs nearly half as much as a copy operation. Figure 7-4 

shows that, with this fault cost, CO\V-COR provides slightly worse performance than 

copy-on-fork. 

The fault cost in Sprite is much higher than the fault cost in the Mach operating 

system [Ras88]. In Mach the page fault cost is less than 10% of the copying cost. If 

Sprite were able to attain the same low fault cost as Mach. forks would be 15 to 20 per

cent faster with CO\V-COR than with copy-on-fork. Thus, with a highly optimized 

page fault handler, CO\V-COR can provide a moderate performance improvement over 

copy-on-fork schemes. 



COW COR 
Faults 

Copies 

Pa!:!es Pae:es cow COR %of Total Saved 

Andrew 2846 2846 1% 71% 26% 28% 

ECD 1430 1448 5% 72% 15% 22% 

User-A 38771 40231 8% 63% 30% 28% 
Uscr-B 109965 112257 6% 66% 23% 27% 

Table 7-3. Sprite COW-COR performance under more realistic conditions. This table 
gives Sprite COW-COR statistics for the two benchmarks and the two measurements 
of user activity. The second and third columns are the number of times a page was 
marked copy-on-write and copy-on-reference by processes forking. Columns four and 
five are the percentages of copy-on-write and copy-on-reference pages that actually 
generated faults. The sixth column gives the percentage of the total number of faults 
taken during the benchmark that were copy-on-write and copy-on-reference faults. Fi
nally, the last column indicates how many page copies were saved by COW-COR rela
tive to a copy-on-fork scheme. 
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Figure 7-4. Total cost of handling fork-related page copyint: on Sun-3's as a function 
of the fraction of pages copied because of copy-on-write or copy-on-reference faults. 
A total cost of 1.0 corresponds to the cost of copying all pages at fork time. The op
timal line represents the cost when the time required for each copy-on-write or copy
on-reference fault is 0, the Mach line when each fault is 0.234 milliseconds (9% of the 
cost of copying a page), and the Sprite line when each fault is 1.1 milliseconds (44% of 
the cost of copying a page). The 2 rightmost venical lines correspond to the fraction 
of pages copied with the COW-COR mechanism for the benchmarks and the 4 left
most venical lines represent the fraction of pages that would have been copied with a 
pure copy-on-write mechanism. The venicalline marked "Others" is the copy frac
tion for Andrew, User A and User B. 

7.6.3. CO\V-COR vs. Pure Copy-on-\Vrite 
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Nearly all of the faults that occurred during the benchmarks and normal use were 
copy-on-reference faults. If a pure copy-on-write mechanism could eliminate these 
faults, then it would provide much better performance than the COW -COR scheme. 
However, for the two benchmarks and normal use, between 80 and 90 percent of those 
pages that were copied because of copy-on-reference faults were eventually modified 
(see Table 7-4). Thus, a pure copy-on-write scheme has only a small advantage over 
the COW -COR scheme: only between 10 and 20 percent of the page copy operations 
required under COW -COR would be eliminated. 

Figure 7-4 shows the performance improvements possible on a Sun-3 with a pure 
copy-on-write scheme. With the high Sprite fault cost, a pure copy-on-write scheme 
provides a 5 to 20 percent improvement over copy-on-fork schemes and a 10 to 20 per
cent improvement over the Sprite COW -COR scheme. With the low ~hch fault cost, 
copy-on-v.'Iite provides fairly substantial improvements over copy-on-fork schemes. 
Thus, with an optimized fault handler, copy-on-write reduces the fork cost by 30 to 40 
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percent over copy-on-fork schemes and by 10 to 20 percent over optimized COW-COR 

schemes. 

7.6.4. Cost of Virtually Addressed Caches 

As mentioned earlier, one of the potential advantages of the Sprite COW-COR 

scheme over a pure copy-on-write scheme is that it may reduce overhead on architec

tures with vinually addressed caches, such as the Sun-3 [SSS85], Sun-4 [Kel86] and 

SPUR [Hil86] architectures. In these machines, protection bits are stored along with 

the data in individual cache lines. To change the protection on a page, the operating 

system must first modify the page table entry, then flush all of the page's lines from the 

cache. When the lines are re-loaded into the cache, their protection bits will be set from 

the new page table entry. 

When a process forks, all of its pages will have to be flushed from the cache in 

order to mark them read-only. This flush must occur in either a pure copy-on-write 

scheme or in Sprite's COW-COR scheme. In addition, whenever a copy-on-write page 

is made writable again, it will have to be flushed from the cache again. Once again, this 

will occur in both schemes. However, Sprite's mechanism allows a copy-on-reference 

page to be made accessible without any cache flushes: since the page was not previ

ously accessible, there will be no data from it in the cache. On average, Sprite's 

COW-COR mechanism will require 2 flushes per page (one at the time of the fork and 

another one later, when the parent's page eventually becomes writable again), while a 

pure copy-on-write scheme will require about 2.6 on the average (one at the time of the 

fork, another one when the parent's page becomes writable again, and a third one on the 

cow COR COR Pure-COW 
Faults Faults Modified Faults 

Andrew I 1% 71% 93% 67% 

ECD I 5% 
' 

72% 81% 63% 

User-A 8% 63% I 79% I 58% 

User-B 6% 66% 90% 65CfC 

Table 7-4. COW-COR vs. Copy-on-Write. This table gives the number of page faults 
that would occur under a pure copy-on-write scheme for the two benclunarks and the 
two measurements of user activity. The second and third columns show the percentage 
of copy-on-write and copy-on-reference pages that actually generated faults. The 
fourth column gives the percentage of those pages that were copied because of copy
on-reference faults that were eventually modified; all of the copy-on-reference pages 
that were eventu:J.lly modified would have had to be copied under a pure copy-on-write 
scheme. The last column is the percentage of pages that would have been copied 
under a pure copy-on-write scheme; it is the second column added to the product of the 
third and fourth columns. 
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58 to 67 percent of the pages that resulted in copy-on-write faults in the child). 

The actual number of cache flushes required will be smaller on architectures such 
as the SPUR and the Sun-4, that use direct-mapped caches. \Vith direct-mapped 
caches, the act of copying a page between virtual addresses that have the same offset 
within the cache will flush the source of the copy from the cache (the destination data 
will replace the source data in the cache because they will both map to the same address 
in the cache). Under COW -COR, over 70% of pages are copied. As a result, an aver
age of only 1.3 cache flushes per page will be required with a direct-mapped cache (one 
at the time of the fork and another one on the 30% of the parent's pages that remain in 
the cache). A pure copy-on-write scheme copies over 60% of the pages. This will give 
an average of 2.0 flushes per page (one at the time of the fork, another one on the 40% 
of the parent's pages that remain in the cache, and a third one on the 58 to 67 percent of 
the pages that resulted in copy-on-write faults in the child). 

Although Sprite's mechanism reduces cache flushing relative to pure copy-on
write schemes, the overhead may still be quite high. For example, if the cost of flushing 
a page is half as great as the cost of copying it, then any copy-on-write scheme will be 
at least as expensive as a copy-on-fork mechanism, even if none of the copied pages are 
ever accessed (unless the pages are on backing store). Since the Sprite COW-COR 
mechanism has not yet been ported to a machine with a virtually addressed cache, I 
have no measurement of the impact of cache flushing on fork performance. However, I 
can estimate the impact of cache flushing on fork performance for the SPUR and Sun-4 
architectures. Because the actual performance on a SPUR and a Sun-4 is dependent on 
numerous variables, including the cache miss ratio and the percentage of data that is 
modified, it is impossible to derive the exact fork cost without actually measuring it. 
However, the worst and best case performance can be easily calculated. 

Figure 7-5 gives the worst case and best case performance of copy-on-write and 
COW -COR on a SPUR. The computation of the performance is a complex one that 
involves the percentage of data that is resident in the cache during copy and flush 
operations, and the percent of cache memory that is diny (see Table 7-5 for the SPUR 
attributes that were used in the computation, and Figure 7-5 for more explanation of the 
computation). In both tt..: best and the worst case, COW-COR is strictly better than 
pure copy-on-write; this shows that CO\V-COR may be a reasonable alternative to pure 
copy-on-write for architectures like a SPCR with virtually-addressed caches. In addi
tion, in the best case, COW-COR and pure copy-on-write can cut the fork cost by a fac
tor of 2 over copy-on-fork schemes, but in the worst case the fork cost is up to three 
times higher with COW-COR or pure copy-on-write. Thus, although CO\V-COR and 
copy-on-write can potentially give a substantial performance improvement over copy
on-fork schemes, they can potentially give an even more substantial performance degra
dation. 

The Sun-4 architecture has a much lower cache flushing cost than a SPUR (see 
Tables 7-5 and 7-6). Figure 7-6 gives the worst case and best case performance of 
copy-on-write and CO\V-COR on a Sun-4. Because of the lower cache flushing cost on 
a Sun-4, CO\V-COR does not perform as well in comparison to pure copy-on-write 
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Figure 7-5. Total estimated cost of fork-related page copies on a SPUR, as a function 
of the fraction of page copies and cache flushes because of copy-on-write or copy-on
reference faults. The anributes of the SPUR architecture that were used to compute the 
curves in the graph are given in Table 7-5. The lower lines of the graph are best-case 
scenarios for copy-on-write and COW-COR and the upper two lines worst-case 
scenarios. The best-case combines the lowest possible flush cost and copy cost for 
copy-on-write and COW-COR and the highest possible copy cost for copy-on-fork. 
The worst-case is when all of the data for each page is present in the cache and clean at 
fork time and when the highest possible flush and copy costs occur for copy-on-write 
and COW-COR at other times. A cost of 1.0 corresponds to the cost of copying every 
page at fork time (copy-on-fork). The 6 vertical lines are the copy fractions for the 4 
benchmarks. The vertical line marked "Others" is the copy fraction for Andrew, User 
A and User B. 
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SPUR Attributes 

Page Size 4096 Bvtes 

Cache Line Size 32 Bvtes 
Copy data 12 Cvcles 

Cache read miss 23 Cvcles 

Copy cost per cache line Write-back data 22 Cycles 

Minimum cost 35 C_ycles 
Maximum cost 80 Cvcles 

Read ta£s 12 Cvcles 

Flush Cost Flush clean line 9 Cvcles 

Flush dirtv line 25 Cvcles 

Pa£e Fault Cost 500 Cvcles 

Table 7-5. Attributes of the SPUR architecture [Woo88]. When a cache line is copied 
at fork-time or because of a copy-on-write or copy-on-reference fault, the destination 
of the copy will not be present in the cache. As a result the SPUR hardware will con
sider this a cache miss and fetch the destination from memory even though it is being 
totally overwritten. Hence the minimum copy cost is 35 cycles (12 for the copy and 23 
to fetch the destination cache line). The maximum cost occurs when the source of the 
copy is not present in the cache (an additional 23 cycles) and the cache line that is be
ing replaced must be written back (an additional 22 cycles). The cost of a cache flush 
ranges from 12 cycles if the line being flushed is not in the cache, to 37 cycles if the 
line being flushed is dirty. The fault cost is extrapolated from the Mach fault cost of 
approximately 500 instructions on a Sun-3 (234 microseconds on a 2 MIP machine). 
Since each instruction on a SPUR takes one cycle, the fault cost is assumed to be 500 
cycles. This fault cost is merely a rough estimate and will be higher when cache 
behavior is taken into account. 
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schemes as it does on a SPUR; COW-COR is slightly better than copy-on-write in some 

cases and slightly worse in others. In addition, the degradation of both CO\V-COR and 

copy-on-write in relation to pure copy-on-fork schemes is not as severe in the worst 

case. However, even with the low cache ftu<;hing cost, the fork cost can still be up to 

twice as high as copy-on-fork schemes. 

The main conclusion that can be drawn from this discussion is that copy-on-write 

mechanisms may not be worthwhile in architectures with virtually-addressed caches. 

The actual performance advantages of copy-on-write will depend on program behavior, 

the flush and copy costs of the architecture, and the actual implementation of the copy

on-write mechanism. Although Figures 7-5 and 7-6 were derived for specific architec

tures and the Sprite implementation, a similar graph could be easily drawn to determine 

the potential benefit of copy-on-write mechanisms for any architecture and implementa

tion. 



Sun-4 Attributes 

Pa£e Size 8192Bvtes 

Cache Line Size 16 Bvtes 
Copv data 10 Cvcles 

Cache read miss 10 Cvcles 

Copy cost per cache line Write-back data 8 Cvcles 
Minimum cost 20 Cvcles 
Maximum cost 38 Cvcles 

Flush clean line 3 Cvcles 
Flush non-consecutive 3 Cycles 

Flush Cost dirtv lines 

Flush consecutive 8 Cycles 
dirtv lines 

Pag:e Fault Cost 500 Cvcles 

Table 7-6. Attributes of the Sun-4 architecture [Kel88]. When a cache line is copied 
at fork time or because of a copy-on-write or copy-on-reference fault, the destination 
of the copy will not be present in the cache. As a result the Sun-4 hardware will con
sider this a cache miss and fetch the destination from memory even though it is being 
totally overwritten. Hence the minimum copy cost is 20 cycles (10 for the copy and 10 
to fetch the destination cache line). The maximum cost occurs when the source of the 
copy is not present in the cache (an additional 10 cycles) and the cache line that is be
ing replaced must be written back (an additional 8 cycles). The cost of a cache flush 
ranges from 3 cycles if the line being flushed is not in the cache, to 8 cycles if consecu
tive dirty lines are being flushed; it only takes 3 cycles to flush a dirty cache line as 
long as the next line in the cache is clean. The fault cost is extrapolated from the Mach 
fault cost of approximately 500 instructions on a Sun-3 (234 microseconds on a 2 MIP 
machine). Since each instruction on a Sun-4 takes one cycle, the fault cost is assumed 
to be 500 cycles. This fault cost is merely a rough estimate and will be higher when 
cache behavior is taken into account. 
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Figure 7-6. Total estimated cost of fork-rebted page copies on a Sun-4, as a function 
of the fraction of page copies and cache flushes because of copy-on-write or copy-on
reference faults. The attributes of the Sun-4 architecture that were used to compute the 
curves in the graph are given in Table 7-6. The lower lines of the graph are best-case 
scenarios for copy-on-write and COW-COR and the upper two lines worst-case 
scenarios. The best-case combines the lowest possible flush cost and copy cost for 
copy-on-write and COW-COR and the highest possible copy cost for copy-on-fork. 
The worst-case is when all of the data for each page is present in the cache and clean at 
fork time and when the highest possible flush and copy costs occur for copy-on-write 

and COW-COR at other times. A cost of 1.0 corresponds to the cost of copying every 
page at fork time. The 6 venical lines are the copy fractions for the 4 benchmarks. 
The venical line marked "Others" is the copy fraction for Andrew, User A and User 
B. 

7.6.5. Effect of Page Size 
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One reason why I measured only a small benefit from CO\V -COR under normal 

use may be that the measurements were made on a machine with large pages (8 

Kbytes). If the page size were smaller, several changes in COW-COR behavior would 

occur: 

• The total number of pages that are marked copy-on-write and copy-on-reference 

would increase. 

• The total number of copy-on-write and copy-on-reference faults would increase. 

• The percentage of copy-on-write and copy-on-reference pages that are faulted on 

out of the total number of copy-on-write and copy-on-reference pages would 

decrease. 

• A pure copy-on-write scheme might improve relative to a COW-COR scheme 

because the percentage of pages that are copied on reference and then are later 
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modified might decrease. 

The only machine that I could perform the measurements on was a Sun-3 which has a 
fixed page size of 8 Kbytes. Although Sprite runs on Sun-2's, they do not have enough 
memory to allow me to measure either the ECD benchmark or normal use. However, 
since the trend in hardware is towards large page sizes, the results that I measured on 
the Sun-3 architecture should be applicable to most machines that will be built in the 
future. 

7.6.6. Effect on System Performance 

In addition to just affecting fork performance, copy-on-write mechanisms can also 
potentially affect overall system performance relative to copy-on-fork schemes. First of 
all, by making forks faster, copy-on-write will improve overall system response time. 
However, since fork time may only account for a small portion of the execution time of 
a process, the actual improvement in overall system performance may be very small. 
For example, the Andrew benchmark takes 280 seconds to complete. A pure copy-on
write scheme could eliminate 33% of the 2846 page copy operations (see Tables 7-3 
and 7-4). If the fault cost were 0, then 2.5 milliseconds could be saved on each of the 
939 page copy operations that would be eliminated, for a total savings of 2.3 out of the 
280 seconds of execution time. This is less than a 1% improvement in the performance 
of the benchmark. 

The other potential benefit from copy-on-write mechanisms is a reduction in 
memory use. By eliminating 30 to 40 percent of the page copy operations that would 
have been required under copy-on-fork, the amount of memory required to fork a pro
cess with copy-on-write will be 30 to 40 percent smaller. If a very large process forks, 
then this can potentially result in a substantial reduction in the demand placed on physi
cal memory, which may result in an overall reduction in the number of page faults 
encountered by the system. However, for the programs that I measured, the amount of 
memory saved by copy-on-write in relation to the amount of physical memory available 
should be insignificant. This is especially true given the fact that most processes 
immediately exec after forking, so any extra memory will only be required for a brief 
instant. For example, in the Andrew benchmark, no process that forks has more than 
about 150 Kbytes of stack and heap, of which 100 Kbytes end up getting copied any
way. Since the machine that I ran the benchmark on has 16 Mbytes of memory, the 50 
Kbytes that are unnecessarily copied occupies an insignificant amount space. 

7.7. Conclusions 

Copy-on-write has been gaining popularity in recent years as a mechanism to pro
vide better fork performance. My measurements of copy-on-write indicate that it can 
indeed provide a tremendous performance improvement over copy-on-fork schemes if 
very few of the virtually-copied pages are modified. However, the measurements of 
normal use indicate that more than 58% of pages that are shared copy-on-write do get 
modified. As a result, less than 42% of the page copy operations that would have been 
required with a copy-on-fork scheme are eliminated. Thus, although copy-on-write h:1s 
tremendous potential, in practice it yields only a moderate performance gain over 
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copy-on-fork. 

There are two additional factors that may make it difficult to achieve even the 40% 
improvement suggested by the above measurements: page faults and cache flushing. 
An extra page fault will occur for each of the copy-on-write pages that ends up getting 
copied. Without a highly-tuned page fault handler, the additional page-fault overhead 
will more than compensate for the reduction in page copy operations. In addition, the 
architectural trend towards virtually-addressed caches has added the overhead of cache 
flushes to any copy-on-write implementation. The actual overhead will depend on the 
program behavior, the architecture, and the copy-on-write implementation, but my 
experience suggests that copy-on-write may actually result in worse performance than 
copy-on-fork for most applications on these machines. System designers need to pay 
very close attention to the fault cost and the cache flushing overhead if they wish to 
achieve the maximum benefit from copy-on-write. 

The Sprite COW-COR scheme, which is a mixture of copy-on-write and copy-on
reference, provides a simple alternative implementation to pure copy-on-write schemes. 
It only requires 10 to 20 percent more page copy operations than a pure copy-on-write 
scheme, yet requires fewer cache flushes on machines with virtually-addressed caches. 
Estimates of the cache flushing overhead on a SPUR indicate that for the SPUR archi
tecture COW-COR can actually provide slightly better fork performance than pure 
copy-on-write. However, on the Sun-4 architecture, which has a lower cache flushing 
cost than a SPUR, COW-COR can be slightly worse than pure copy-on-write. Thus, 
whether or not COW-COR is better than pure copy-on-write will depend on the archi
tecture. 
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CHAPTER 8 

Conclusions 

This dissertation has described the design, implementation and performance of 
several techniques for managing physical memory in a network operating system. In 
addition to measuring the mechanisms used daily in Sprite, I have also measured a 
variety of alternative mechanisms; these measurements provide the first quantitative 
comparisons between many of the popular memory-management techniques. My meas
urements have demonstrated that, by effectively utilizing physical memory, all worksta
tions in a network, including those without disks, can attain high-performance data 
access while retaining the ease of sharing possible with timesharing systems. This 
high-performance can be attained while utilizing only a small portion of server CPU 
cycles and network bandwidth. 

There are two keys to providing high performance in a network operating system. 
First, client caches must be allowed to become large without impacting virtual memory 
performance. The variable-size cache mechanism that I developed for Sprite lets the 
file cache vary in size while balancing the needs of the vinual memory system and the 
file system. The Sprite mechanism is better than any fixed-size cache mechanism and is 
a viable alternative to mapped files. 

The Sprite mechanism has the advantage over mapped files that it allows the file 
system to be penalized so that it will be more difficult for the file system to take 
memory from the virtual memory system. The use of the penalty appears to be effec
tive in improving interactive response without degrading file system performance. The 
optimal value of the penalty is not yet clear; how much to penalize the file system will 
depend on the behavior of the users of the system. 

The other key to attaining high performance is to use the correct \Vri.ting policy on 
clients and servers. There is a tradeoff between reliability and performance; the most 
reliable policies give the worst performance, and the least reliable the best performance. 
As CPU s get faster and disks do not, the writing policy will become even more impor
tant; any policy that requires application programs to wait for the disk will cause seri
ous performance degradation. The client and server writing policies that provides a 
good compromise between reliability and performance are to delay write-backs for 30 
seconds. This gives performance comparable to policies with longer delays, while 
ensuring at most 60 seconds of data are lost in a system crash. 

Attaining high performance need not require a relaxation on the consistency 
guarantees for files. ?v1ost distributed systems that cache data on client workstations do 
not provide the same level of consistency that was provided in timesharing systems. 
Thus, users cannot share data as easily as they once could. However, the cache con
sistency mechanism that I have developed for Sprite is simple yet lets file access have 
the same semantics as if all processes on all of the workstations were executing on a 
single timesharing system. 
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Another component to the performance of user programs in addition to file system 

performance is the speed of process creation. A very popular optimization on many 

systems is to eliminate page copy operations when a process is created through the use 

of copy-on-write. Although copy-on-write can indeed provide a tremendous improve

ment in performance, my measurements of normal use indicate that copy on write will 
provide at best a 40% improvement in fork performance. Because of page fault over

head and the extra cache overhead on machines with virtually-addressed caches, even 

this 40% improvement will be very difficult to attain. The Sprite COW -COR scheme, 
which is a mixture of copy-on-write and copy-on-reference, provides a simple alterna

tive implementation to pure copy-on-write schemes. It only requires 10 to 20 percent 

more page copies than a pure copy-on-write scheme, yet may require fewer cache 

flushes on machines with virtually-addressed caches. 

The next several years should be very exciting because of tremendous increases in 

memory sizes, network speeds and CPU speeds. The work that I have presented in this 

dissertation will hopefully be useful for system designers who want to get the best per

formance out of the systems of the future. I believe that the key to attaining high per

formance in both present and future systems is to effectively utilize large physical 

memories. This will not only let users get their work done as efficiently as possible, but 

will also greatly improve system scalability. 
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APPENDIX A 

Detailed Results from Chapter 4 

This appendix contains 5 tables of detailed results that were not given in Chapter 
4. The five tables A-1 through A-5 contain the results of running the five benchmarks 
Andrew, Vm-make, Sort, Ditroff and Diff on Sun-3 workstations. The top row of each 
line contains the results and the bottom row contains the standard deviations from the 3 
runs. The first two lines of each table are the results when the benchmark was run 
locally on the file server. The next two lines are when the benchmark was run on a 
client with no cache. The rest of the lines are for various client cache sizes. The first 
column of each table is the elapsed time in seconds, the second column the number of 
network bytes transferred during the benchmark, the third column the server utilization, 
the fourth column the number of disk reads and disk writes and the last column the disk 
utilization. 
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Results for the Andrew Benchmark 
Elapsed Network Server Disk Disk 

Cache Size Time Kbvtes Uti! I/O's Util 
265 -- -- 1553 14% 

4 Mbytes Local, cold 2.53 -- -- 106.53 0.58 
255 -- -- 924 10% 

4 Mbytes Local, warm 
2.53 -- -- 40.11 0.00 
321 24361 17.66% 1387 9% 

No cache, cold 1.53 75.63 0.09 6.35 0.00 
307 24320 18.00% 863 6% 

Ko cache, warm 6.08 2.31 0.11 359.80 1.73 
301 14173 14.76% 650 5% 

128 Kbytes 
3.06 184.64 0.09 9.54 0.00 
290 11118 14.00% 657 5% 

256 Kbytes 1.00 108.15 0.03 10.58 0.00 
286 9617 13.58% 644 5% 

512 Kbytes 
1.15 305.21 0.06 7.77 0.58 
283 8380 13.26% 652 6% 

1024 Kbytes 
1.00 455.17 0.11 7.51 0.00 

II 
278 6303 12.66% 652 5% 

2048 Kbytes 
0.58 81.95 0.01 1.73 0.58 
277 5496 12.43% 653 6% 

3072 Kbytes 0.00 37.29 0.02 5.69 0.00 

I 
275 4378 12.13% 647 5% 

4096 Kbytes, warm 
0.00 13.00 0.01 1.73 0.00 
288 6425 12.49% 1208 8% 

4096 Kbytes, cold 
2.31 381.73 0.07 85.81 0.58 

Table A-1. Results from the Andrew Benchmark. 
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Results for the VM Benchmark 
Elapsed Network Server Disk Disk 

Cache Size Time Kbvtes Util I/O's Util 
284.39 -- -- 948 7% 

4 Mbytes Local, cold 1.03 -- -- 23.16 0.58 
277.10 -- -- 586 5% 

4 Mbytes Local, warm 
1.03 -- -- 4.58 0.00 

336.93 17849 13.88% 900 6% 
No cache, cold 

0.76 9.54 0.04 9.71 0.00 
330.10 17717 14.03% 568 4% 

No cache, warm 0.74 0.58 0.02 13.87 0.00 
318.68 13847 12.02% 456 3% 

128 Kbytes 0.25 194.07 0.06 1.73 0.00 

313.33 11474 11.31 o/o 473 3% 
256 Kbytes 1.01 157.61 0.11 28.58 0.58 

303.94 6870 9.91% 442 3% 
512 Kbytes 0.42 135.74 0.03 6.24 0.00 

298.09 4403 9.17% 437 3% 
1024 Kbytes 0.82 150.41 0.04 2.65 0.00 

296.16 3099 8.89% 430 3% 
2048 Kbytes 1.49 48.68 0.06 0.58 0.00 

295.49 2884 8.86% 430 3% 
3072 Kbytes 0.81 3.06 0.02 5.03 0.58 

295.77 2SS5 8.87% 432 3% 
4096 Kbytes, warm 

0.21 2.08 0.01 1.00 0.58 
304.75 3956 8.97% 764 5% 

4096 Kbytes, cold 
0.18 0.58 0.01 2.65 0.00 

Table A-2. Results from the Vm-make Benchmark. 
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Results for the Sort Benchmark 
Elapsed Network Server Disk Disk 

Cache Size Time Kbvtes Uti! I/O's Uti! 
63.56 -- -- 716 20% 

4 Mbytes Local, cold 0.20 -- -- 16.09 0.58 
59.70 -- -- 470 15% 

4 Mbytes Local, warm 0.20 -- -- 3.06 0.00 
74.84 6154 15.03% 855 21% 

Ko cache, cold 0.40 9.81 0.05 11.14 0.00 
70.79 6152 15.16% 564 16% 

No cache, warm 0.44 2.31 0.08 9.54 1.53 
68.82 6152 15.25% 527 16% 

128 Kbytes 0.42 3.61 0.07 16.46 1.15 

I 

71.39 6170 14.83% 550 15% 
256 Kbytes 2.89 35.16 0.35 71.60 1.15 

71.92 6154 14.34% 462 12% 
512 Kbytes 

0.87 4.36 0.08 13.58 0.00 
70.84 6105 13.99% 360 8% 

1024 Kbytes 
0.09 2.00 0.07 3.46 0.58 

63.59 3392 9.39% 307 7% 
2048 Kbytes 

0.10 39.89 0.18 3.06 0.58 
59.37 2058 7.37% 305 8% 

3072 Kbytes 0.44 256.77 0.40 3.21 0.00 
58.75 1730 7.04% 306 8% 

4096 Kbytes, warm 
0.04 29.37 0.02 2.00 0.00 

64.74 3078 9.49% 581 1 13% 
4096 Kbytes, cold 0.16 46.03 0.27 0.58 I 0.00 

Table A-3. Results from the Sort Benchmark. 
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Results for the Ditroff Benchmark 

Elapsed .1\etwork Server Disk Disk 
Cache Size 

Time Kbvtes Util I/O's Uti! 

127.83 -- -- 289 5% 
4 Mbytes Local, cold 

0.38 -- -- 15.01 0.58 

125.03 -- -- 133 2% 
4 Mbytes Local, wam1 

0.3R -- -- 0.5R 0.00 
133.17 2050 4.93% 

I 
267 5% 

No cache, cold 
0.39 10.39 0.04 2.00 0.00 

132.43 2362 5.12% 206 3% 
No cache, warm 

1.94 269.05 0.30 129.06 2.31 

126.70 836 1.81% 116 2% 
128 Kbytes 

0.50 266.77 0.20 1.00 0.00 

126.41 682 1.68% 117 2% 
256 Kbytes 

0.05 2.08 0.02 2.65 0.00 

126.29 578 1.61% 118 2% 
512 Kbytes 

0.02 4.73 0.01 2.89 0.00 

125.85 325 1.41% 119 2% 
1024 Kbytes 

0.01 1.15 0.02 2.65 0.00 

125.87 325 1.42% 118 2% 
2048 Kbytes 0.02 1.15 0.02 3.06 0.00 

125.87 325 
I 

1.42% 118 2% 
3072 Kbytes 0.02 1.15 0.02 3.06 0.00 

128.01 839 2.05% 282 5% 
4096 Kbytes, cold 

II 0.92 270.49 0.28 46.77 0.00 

Table A-4. Results from the Ditroff Benchmark. 
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Results for the Diff Benchmark 
Elapsed l\etwork Server Disk Disk 

Cache Size 
Time Kbvtes Uti! I/O's Uti! 
21.09 -- -- 553 76% 

4 Mbytes Local, cold 
0.12 -- -- 0.58 0.58 
4.60 -- -- 32 11% 

4 Mbytes Local, wann 
0.12 -- -- 1.73 0.58 

25.15 2289 14.33% 548 63% 
No cache, cold 

0.13 5.20 0.08 3.61 0.58 
8.47 2286 27.18% 24 4C:o 

No cache, warm 
0.10 0.00 0.10 1.15 0.58 
8.66 2284 26.72% 24 4% 

128 Kbytes 
0.05 4.04 0.36 1.15 0.58 
8.73 2285 26.56% 24 4% 

256 Kbytes 
0.07 1.15 0.51 1.15 0.58 
8.69 2285 26.68% 24 4% 

512 Kbytes 
0.09 1.15 0.16 1.15 0.58 
8.84 2308 26.49% 25 4% 

1024 Kbytes 
0.16 41.00 0.12 1.73 0.58 
8.72 2285 26.56% 24 5% 

2048 Kbytes 
0.08 1.15 0.22 1.53 0.58 

I 
4.54 6 2.18% 24 8% 

2128 Kbytes 
0.01 0.58 0.74 1.15 0.58 

I 
4.53 5 

I 
2.18% 25 9% 

3072 Kbytes 
0.01 1.15 0.75 1.15 0.58 

I 
4.53 

I 
5 

I 
1.53% 

I 
26 10% 

4096 Kbytes, warm 
0.00 1.15 0.13 2.08 1.15 

14096 Kbytes, cold II 
25.05 

I 
2284 

I 
14.21% 

I 
548 64% 

0.13 0.00 0.10 0.58 0.00 

Table A-5. Results from the Diff Benchmark. 
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APPENDIX B 

Standard Deviations from Chapter 5 

This appendix contains tables of the standard deviations for the results given in the 
tables in Chapter 5. Each data point in the tables in Chapter 5 was computed by taking 
the average of three runs of the given benchmark. 

Network Kbytes vs. Client Policy Standard Deviations 

Client Andrew II Vm II Son 

Policv Read Write I Total li Read / Write I Total II Read I \Vrite I Total 
WT I 0.0 0.0 I 0.0 II 0.0 I 0.0 0.0 II 0.0 I 0.0 I 0.6 

WBOC 0.6 0.0 I 0.0 I! 0.0 I 0.0 0.0 II 0.6 I 0.0 0.0 
ASAP !• 0.0 0.0 I 0.6 II 0.0 I 0.6 0.6 li 0.6 I 0.0 i 0.0 

" 
I 

WBOC-ASAP 0.6 I 0.0 0.6 ' 0.0 I 0.0 0.6 11 0.0 I 0.0 I 0.6 I I 

delav-30 0.0 2.5 2.0 I 0.0 I 2.6 2.1 I' ,I 1.2 l 61.4 62.6 
full-delav 0.6 ! 1.2 1.2 I 0.0 i 2.6 ,., " 0.0 I 0.6 0.0 I -·" 
WT-TMP 0.6 I 1.7 1.7 I 0.0 I 1.2 1.7 0.0 I 1.2 1.2 

WBOC-TMP 0.6 0.6 0.6 II 0.6 I 0.0 0.0 0.0 ! 0.6 I 0.0 
ASAP-H.1P I! 0.0 0.0 0.0 II 0.6 I 

I 0.0 I 0.6 \1 0.0 ' 0.0 i 0.0 

Table B-1. Network Kb~tcs vs. Client Policy. This table shows the standard devia
tions for the results in Table 5-4. 
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Disk Traffic St2ndard Deviations: 30-Second Delav on Server 

.Andrew Ym-make Sort 

Client Disk \'>'rites 
I Disk 

Disk Writes 
Disk 

Disk Writes 
Policy Disk 

Data Ind/ Total Data Ind/ 
I 

Total Data Ind/ Total 
! Uti! Uti! Uti! 
i Desc Desc Desc 

WT I 0.0 I 1.0 2.9 2.1 i 0.0 i 2.1 5.1 I 3.5 1.2 I 19.lJ 4.0 23.8 

V>'BOC II 0.0 0.0 2.6 2.6 0.0 0.6 4.2 4.7 1.0 13.3 1.0 12.4 

ASAP i 0.0 2.6 5.6 6.1 I 0.0 0.0 I 2.5 I 2.5 0.6 13.9 1.2 14.5 

V>'BOC-
li 0.0 0.0 6.6 6.6 I 0.0 0.6 I 3.6 3.2 I 0.6 14.4 1.2 15.6 

ASAP ! 

! de]a,·-30 li 0.0 I 0.6 9.3 I 9.5 I 0.0 0.6 I 3.6 4.0 I 0.0 0.0 I 0.6 I 0.6 
I full-

I I I I I I [I I I delav 
0.0 0.0 23.3 23.3 0.0 0.0 1.7 1.7 0.0 0.0 0.6 0.6 

'NT-
II 0.0 1.0 7.0 I 7.8 I 0.0 0.6 6.0 

I 
5.5 II 0.6 0.0 0.6 I 0.6 

TMP 
WBOC-

II I II I 
I I• 

I 0.6 0.6 2.6 2.9 0.0 0.0 7.4 I 7.4 II 0.0 0.0 0.6 0.6 n,1p I 

ASAP-
I 0.6 

I 
0.0 I 5.7 5.7 li 0.0 0.6 I 2.5 I 3.1 II 0.0 0.0 0.6 0.6 

T/\1P 

Table B-2. The table shows the standard deviations for the results in Table 5-5. 

Disk Traffic Standard Deviations: Write-Throu~h on Server I 
I Andrew I \'m-make I! Sort I 

Client Disk Writes II Disk Writes I D' k I Disk \Vrites 
Policy Disk 

Data 
I 

lnd/ I Total ·1 Disk Data I Ind/ 
I 

Total U~l I Data I Ind/ Total Util 
Desc 

Uti! 
Desc Desc 

WT ! 1.0 i 1.2 I 8.5 I 7.4 II 0.0 I 2.3 i 13.7 I 15.9 II 0.6 ! 1.2 ! 2.6 3.8 
\','BQC 1: 0.0 0.0 I 3.8 ! 3.8 II 0.0 I 0.0 I 4.4 I 4.4 II 0.6 I 0.0 I 2.0 2.0 

ASAP I! 0.6 2.6 I 4.0 I 6.4 !! 0.0 0.6 I 3.1 I 3.6 I 0.6 I 0.0 ! 0.6 0.6 
'W'BOC-

II 1.0 1.0 3.2 I 2.3 II 0.0 I 0.6 I 5.0 I 5.5 II 0.6 I 0.0 I 0.0 I 0.0 
I-. SAP I, 

delav-30 I 1.0 I 3.5 I 8.9 ! 12.3 I 0.0 I 1.5 I 2.5 I 2.3 H 0.6 ! 8.2 I 32.9 ! 41.0 

full-
II I I I 

I 
I II 

' 

delav 
0.6 0.0 14.8 14.8 0.0 0.0 I 7.8 7.8 0.0 I 0.0 i 1.5 I 1.5 

I I 

\VT-
II I I I I I II 

I 

I 
i 

I Tl\1P 0.0 1.2 1.7 2.5 0.0 1.2 7.5 6.6 0.0 I 0.6 2.5 I 3.1 
' 

WBOC- I' 
I 

I I 
I 

I I 
' 

i 0.6 I 0.0 1.2 1.2 0.0 0.0 4.0 4.0 0.0 0.0 2.6 2.6 
T/\1P II I I I I I 

' 

I ~}\~:- II 0.6 I 3.1 I 7.2 I 10.3 II 0.0 I 0.0 I 1.7 i 1.7 II 0.0 I 0.0 I 0.0 0.0 

Table B-3. The table shows the standard deviations for the results in Table 5-6. 
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Disk Trafftc Standard Deviations: ASAP on Server I 
Andrew ! Ym-make Sort 

Client Disk Writes I Disk Writes 

I 

Disk Writes 

Policy 
Disk 

Data i Ind/ Total Disk I Ind/ I Total 
Disk 

Uti! Uti! I Data Uti! Data Ind/ Total 
Desc Desc Desc 

WT I 0.6 7.0 I 8.9 15.6 0.0 I 0.6 2.9 3.2 II 0.0 1.0 2.1 2.5 

\VBOC I 0.0 1.0 I 17.6 ! 17.4 0.0 2.5 6.5 I 8.2 I 0.6 0.6 6.0 5.6 

ASAP I 0.0 0.6 i 10.1 I 10.4 I 0.0 1.2 7.4 i 8.2 0.6 0.6 I 10.4 9.8 

WBOC- 0.6 0.6 I 5.0 I 
5.5 I 0.0 1.5 I 7.9 1 9.5 0.6 0.6 7.0 7.5 

ASAP 
delav-30 I 0.0 I 5.5 13.1 ! 18.2 I 0.0 I 1.0 6.8 I 7.1 I 0.6 21.7 11.4 32.7 

I 
full- i 

0.6 0.0 I 11.1 I 11.1 ' 0.0 2.5 0.6 I 2.0 I 0.6 I 0.6 2.5 2.0 I I I 
delav I .I I I 

\VT-
I I II I I' 

I 

Tl\1P 
0.6 1.5 12.5 13.5 0.0 2.3 9.1 7.4 ,I 0.0 1.5 

I 1.5 3.0 

WBOC-
II I II 

I 

I 
!I 

I 0.0 0.6 1.2 1.0 0.0 I 1.0 3.1 4.0 I' 0.6 0.6 9.0 8.5 
T:\lP ,I 

I ASAP- I 

I I I I I I II 
I 0.6 3.1 20.1 18.6 :I 0.6 0.6 7.6 7.9 0.0 0.6 1.7 2.1 I l T,".lP I I, 

Table B-4. The table shows the standard deviations forthc results in Table 5-7. 

Disk Traffic Standard Deviations: Last Dirtv Block 

Andrew Ym-make II Sort 

Client 
I Disk 

Disk Writes I Disk 
Disk Writes 'I D. k I Disk Writes 

Policy 
Util Data lind/ I Total Util Data I Ind/ I Total I! U~l I Data I Ind/ I Total 

Desc Desc Desc 

\VT I! 0.0 1.0 I 6.0 I 6.7 I! 0.0 0.6 i 5.5 I 5.6 II 0.6 I 0.6 ' 2.6 I 2.1 I 

WBOC I 0.0 0.0 I 3.8 I 3.8 I 0.0 0.0 I 3 . .5 I 3.5 li 0.6 I 0.6 i 2.3 J 2.9 

ASAP I 0.0 13.0 I 12.3 I 23.8 II 0.0 0.0 ! 4.5 ! 4.5 i 1.2 I 1.2 I 4.4 I 4.9 
I I 

I \VBOC-
II I I 

I' 
I I I 1: I 

I 

I 
ASAP 

0.0 0.6 7.2 7.0 II 0.0 0.0 2.6 2.6 0.6 0.0 I 6.7 6.7 

I delav-30 II 0.0 i 0.6 I 2.3 ' 2.9 )I 0.0 I 2.1 I 0.6 I 1.5 li 2.1 I 43.1 I 4.0 46.9 
I I I 

full-
II 0.0 0.6 I 2.9 I 3.2 II 0.0 0.0 I 2.5 I 2.5 II 0.6 I 0.0 I 1.7 I 1.7 

delav I 

I \\'T-
II 0.0 I 1.2 I 4.5 I 3.6 II 0.0 I 1.2 I 6.4 i 7.0 

II 
0.0 I 0.0 I 0.6 I I li 0.6 

I DlP I 

I \\BOC-
i T!\IP 

0.0 0.0 6.2 6.2 0.0 0.0 4.0 4.0 0.6 0.6 1.0 0.6 

I ASAP-
0.0 0.0 7.2 7.2 0.0 0.0 8.0 8.0 0.0 0.0 4.4 4.4 

i TMP 

Table B-5. The table shows the standard deviations for the results in Table 5-8. 



Client Elapsed Time and Server Utilization: 30-Second Delay on Server 

Client 
Andrew Vm-make Sort 

Policy 
Elapsed Server Elapsed Server Elapsed Server 

Time Util Time Util Time Uti! 
WT 0.0 0.1 0.6 0.1 0.6 0.1 

WBOC 0.6 0.0 0.4 0.0 0.1 0.1 
ASAP 1.2 0.0 I 0.9 0.0 1.1 0.1 

WBOC-ASAP I 0.6 0.0 0.9 0.0 0.9 0.0 
delav-30 0.6 0.0 0.2 0.0 0.1 0.3 
full-delav I 1.0 0.0 0.1 0.0 0.0 0.1 
WT-TMP 0.6 0.0 0.5 0.0 0.0 0.1 

WBOC-TMP 0.0 0.0 0.4 0.0 0.0 0.1 
ASAP-TMP 2.9 0.1 0.3 0.0 0.0 0.1 

Table B-6. This table contains the standard deviations for the results given in Table 
5-9. 

Client Ela_psed Time and Server Utilization: Write-Through on Server 

Client 
Andrew Vm-make I Sort 

Policy 
Elapsed Server Elapsed Server 

I 
Elapsed Server 

Time Util Time Util Time Util 

WT 1.5 0.1 2.7 0.1 0.0 0.0 
\VBOC ') --.) 0.1 1.7 0.0 0.3 0.0 

ASAP 1.7 0.1 0.5 0.0 0.1 I 0.1 
WBOC-ASAP 4.6 0.2 0.8 0.0 I 0.2 I 0.0 

delav-30 0.6 0.1 0.5 I 0.0 2.8 I 0.1 
full-delay 0.6 0.0 1.0 0.0 0.1 0.0 
\VT-TMP 2.1 0.1 1.6 0.0 0.3 0.1 

WBOC-TMP 2.9 0.1 0.7 0.0 I 0.1 0.0 
ASAP-TMP 0.6 0.0 0.8 0.0 0.1 0.1 

Table B-7. This table contains the standard deviations for the results given in Table 
5-10. 
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Client Elapsed Time and Server Utilization: ASAP on Server 

Client 
Andrew Vm-make Sort 

Policy 
Elapsed Server Elapsed Server Elapsed Server 

Time Uti! Time Uti! Time Util 

\YT 0.0 0.0 0.4 0.0 I 0.1 0.1 

WBOC 0.6 0.0 0.9 0.0 :I 0.2 0.2 

ASAP 0.0 0.0 0.5 0.0 0.0 0.0 

WBOC-ASAP 0.6 0.0 1.1 0.1 0.0 0.1 

delay-30 0.0 0.0 1.9 0.1 0.2 0.5 

full-delav I 0.0 0.0 1.0 0.0 I 0.1 0.1 

WT-TMP 0.6 0.0 
I 

1.8 0.0 I 0.1 0.1 I 
WBOC-TMP 0.6 0.0 0.7 0.0 I 0.0 0.2 

ASAP-TMP 1.0 0.0 0.5 0.0 0.0 0.1 

Table B-8. This table contains the standard deviations for the results given in Table 

5-11. 

Client Elapsed Time and Server Utilization: LDB Policv 

Client 
Andrew Vm-make Sort 

Policy 
Elapsed Server Elapsed Server 

I 
Elapsed Server 

Time Util Time Util Time Uti! 

WT I 1.2 0.0 1.9 0.1 0.7 0.1 

\VBOC 0.6 0.0 1.1 0.0 0.4 0.1 

ASAP 0.0 0.0 1.4 0.0 0.2 0.2 

WbOC-ASAP 1.0 0.0 1.4 0.1 0.3 0.1 

delav-30 II 0.6 0.0 0.5 0.0 
I 

0.8 0.6 I 
full-delav I 0.6 0.0 I 1.1 0.0 0.0 0.1 

WT-TMP I 0.6 0.0 II 0.4 0.0 II 0.2 0.0 

WBOC-TMP I 0.6 0.0 I 0.6 I 0.0 il 1.2 0.2 

ASAP-TMP 1.0 0.0 1.1 0.0 I 0.0 I 0.1 I 

Table B-9. This table contains the standard deviations for the results given in Table 

5-12. 
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APPENDIX C 

Detailed Results from Chapter 6 

This appendix contains tables of results from Chapter 6. The tables were not 
given in Chapter 6 because they contained unnecessary details. The tables C.1 through 

C.lO give the performance of the variable-sized cache benchmark for the 5 physical 
memory sizes. The top row in each table is the result when the client did not use any 

cache. The next few rows before the row labeled norm are when the file system cache 
was fixed at various sizes. The row labeled norm was with a variable-size cache with 

no file system penalty. The remaining rows are when the file system was penalized 

from 60 to 960 seconds. Tables C.1, C.3, C.S, C.7, and C.9 contain the results from the 
benchmarks; each row was generated by taking the average of the results from three 

runs of the benchmark in the given configuration. Tables C.2, C.4, C.6, C.8, and C.lO 

contain the standard deviations of the three runs of the benchmark. 

In tables C.1, C.3, C.S, C.7, and C.9 each row is subdivided into two rows. The 
upper row is the result of the benchmark and the lower row is the result relative to the 

row labeled norm. 

The columns of each table are as follows. The first column is the amount of fixed 
cache or the amount of penalty. The second column is the percent of the server's CPU 
that was utilized while running the benchmark. The third column is the number of 
seconds that the benchmark took to execute. Column 4 is the total number of page 
faults and Column 5 is the number of faults that came from swap space. The sixth 
column is the number of pages that were written out to swap space. Columns 7 through 

9 are the number of file system Kbytes that were transferred by the network. Finally, 
Columns 10 through 12 are the total number of Kbytes, including both VM and FS 
bytes, that were transferred by the network. 



nocc 

0.5M 

Server 

Uti! 
24.91 
1.07 

23.87 
1.02 

I

I Elap 

Time 
982 
1.04 
951 
1.01 

1M 36.73 
' 1.57 

I 1899 
2.02 

norm 

60 

120 

240 

480 

960 

I
I 23.37 

1.00 I 
9-!2 
1.00 

' 23.19 
I o.99 
I 24.04 
' 1.03 

I 
23.34 I 
1.00 

23.59 I 
1.01 

23.87 
1.02 

ng 
0.99 
923 
0.98 
923 
0.98 
909 
0.97 
919 
0.98 

10 MecaBvtcs of MemorY on the Client 
raulls FS Net I/0 

Page 

Total 

I 
4569 
1.38 
4701 
1.42 

48869 
14.77 
3309 
1. 00 
4009 
1.21 
4-!24 
1.34 
3806 
1.15 
3556 
1.07 
3837 
1.16 

Swap 

3332 
1.56 

44919 
20.99 
2140 
1.00 
2703 
1.26 

I 
3064 
1.43 
2628 
1.23 
2399 
1.12 
2654 
1.24 

Outs 
3098 
0 R3 
3i:~2 

0.85 
6272 
1.67 

I 
374g 
1.00 

I 3183 
I 0.85 

3234 
0.86 
3042 
0.81 
3090 
0.82 
3106 
0.83 

Read I 
33948 I 
1.49 

1 30185 
I 1.33 

287S7 I 
1.26 

22761 
1.00 

24828 
1.09 

27075 
1.19 

29600 
1.30 

29666 
1.30 

29727 
1.31 

Write I Total 
9810 43759 
1.03 1.36 
9506 39692 
1.00 1.23 

9485 38273 
1.00 1.19 
9485 
1.00 
9485 
1.00 
9485 
1.00 
9485 
1.00 
9486 
1.00 
9485 
1.00 

I 32247 
1.00 

34314 
1.06 

36561 
1.13 

39086 
1.21 

39152 
1.21 

39213 
1.22 

Table C-1. 10 Mbytes of memory on Client. 

Read 
74647 
1.42 

71776 
1.37 

I 438587 
8.35 

52533 
1.00 

60434 
1.15 

Total Net I/0 

I Write 
39506 
0.90 

39804 
0.90 

76257 
1.73 

43987 I 
1.00 

I 
39398 I 
0.90 

66234 39990 
1.26 0.91 

63686 II 38260 
1.21 0.87 

61681 38629 
1.17 0.88 

64080 38829 
1.22 0.88 

127 

Total 
114154 

1.18 
111580 

1.16 
514845 

5.33 
96521 
1.00 

99832 
1.03 

106225 
1.10 

101946 
1.06 

100311 
1.04 

102910 
1.07 

Standard Deviations: 10 MecaBvtes of Memorv on the Client 

Server I Elap 
Faults Page I FS Net I/0 Total Net I/O 

Util Time Total Swap Outs ! Read [ Write I Total Read I Write I Total 

nocr '! 0.4 I 3.1 74-l 591 247 I 25 I 0.0 I 25 I 6182 I 2258 i 8425 

0.5M I 0.4 I 8.7 439 I 363 79 I 16 I 2.3 I 15 i 3674 ! 763 I 4378 I 

1M I 03 I 6fJ 2731 ! 2811 I 27 I 215 ! 0.6 i 215 22609 948 I 23556 

norm 04 : 20 ! 212 213 14CJ i 721 I 0.6 I 721 I 2106 : 121\8 I 3247 

60 0.7 I 34 I 958 769 I 202 I 172 i 0.6 I 172 I 7821 I 1900 i 9431 

120 0.8 I 39 1026 863 304 I 929 I 0.0 I 929 7982 I 2800 i 10536 

240 0.2 I 43 727 628 I 194 I 256 I 0.0 I 256 5836 I 1797 I 7614 I 

480 0.2 I 18 I 332 I 287 107 I 310 ' 0.6 I 311 I I 3033 I 986 I 4015 

I 960 II 1.0 I 6.4 I 934 I 778 I 164 I 205 I 0.0 ! 205 I 7637 1599 ! 9179 I 

Table C-2. Standard deviations 10 Mbytes of memory on Oient. 
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11 Me~::aBvtes of Memorv on the Client 

Server Elap 
Faults Page 

FS t\etl/0 Total Net l/0 

Uti! Time Total Swap Outs Read Write I Total Read Write Total 

II 
23.57 846 2105 836 

I 
2481 33941 9810 

I 
43751 54005 33636 87642 

nocc 1.07 1.01 0.86 0.57 0.85 1.73 1.03 1.50 1.28 0.91 1.11 

0.5M I 
21.82 793 1739 866 2230 30242 9508 

I 
39750 47041 

I 
30935 

I 
77976 

0.99 0.94 0.71 0.59 0.76 1.54 1.00 1.37 1.12 0.84 0.99 

1~1 I 21.57 
I 

850 2304 1323 2431 29380 9485 38866 50857 32720 83578 
I 0.98 1.01 0.94 0.90 0.83 1.50 1.00 1.34 1.21 0.89 1.06 

2M 
35.71 

I 
1896 

I 
47323 43525 6051 

I 
28419 9485 

I 
37905 425297 73998 499296 

1.63 2.2n 19.22 29.55 2.on 1.45 1.00 1.30 10.11 2.01 6.33 

I 
21.96 

I 
840 

I 
2462 

I 
1473 I 2934 19609 

I 
9485 290':1-' 

I 
42080 

I 
36781 78862 

norm ; .00 1.00 100 1.00 i 1.00 1.00 100 1.00 1.00 1.00 100 I 

60 I 
21.13 

I 
821 

I 
2027 1097 I 2355 23287 I 9482 

I 
32769 42206 31828 74034 

I 0.96 0.98 0.82 0.74 I 0.80 1.19 1.00 1.13 1.00 0.87 0.94 

120 I 
20.85 

I 
798 1708 874 2065 24476 I 9482 1 33958 

I 
40754 29356 

I 
70110 

0.95 0.95 0.69 0.59 0.70 1.25 1.00 I 1.17 0.97 0.80 0.89 

I 240 21.54 
I 

797 
I 

1766 
I 

915 
I 

2265 28855 9485 38341 
I 

45819 31249 77068 
0.98 0.95 0.72 0.62 0.77 1.47 1.00 1.32 1.09 0.85 0.98 

480 
22.11 777 1714 867 2303 29195 9485 38681 45729 31476 77205 
1.01 0.93 0.70 0.59 0.79 1.49 1.00 1.33 1.09 0.86 0.98 

960 
21.38 780 1760 910 2053 29500 9484 38984 46402 29406 75808 
0.97 0.93 0.72 0.62 0.70 1.50 1.00 1.34 1.10 0.80 0.96 

Table C-3. 11 Mbytes of memory on Client. 

Standard Deviations: 11 MecaBvtes of l\lemorv on the Client 

I Server I Elap I Faults 
Page I FS Net I/0 I Total Net I/0 

I 
I 

Outs I Read I Write I I I 
Uti! Tin'e Total Swap Total Read I Write Total 

nocc I 0.5 I 23 I 34 20 166 I 27 I 0.0 27 337 I 1468 1537 

0.5M I! 0' ·' I 14 I 58 I 39 i 25 i 26 I 
,.,~ 

-.:> 27 530 I 232 751 I 
1M I 0.4 I 8.5 I 105 I 91 65 I 8.0 I 0.0 8.0 894 I 574 1458 I 
2M ! 2.2 I 285 I 14042 I 12851 I 964 I 172 I 0.0 172 ' 116909 I 11367 128158 

norm 1: 0.1 14 I 35 I 30 I 129 I 325 i 0.0 324 223 ' 1093 I 1268 I 

60 0.6 i 27 I 159 I 151 168 I 756 i 2.3 I 757 2097 1416 I 2495 I 
120 I 0.2 ! 5.1 I 73 I 56 130 I 206 I 2.3 I 208 I 807 i 1085 ! 1510 ! 

240 I, 0.8 I 8.9 I 84 I 73 I 290 I 1009 I 0.0 I 1009 I 1435 ! 2515 I 3950 
-480 ! 0.) 16 46 46 187 228 I 0.0 I 228 -63) : 1610 2206 

960 II 0.2 9.6 35 30 93 ' 147 I 2.3 150 364 771 534 

Table C-4. Standard deviations with 11 ~fbytes of memory on Client. 
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12 MegaBvtes of Memorv on the Client I 

Server 

I 

Elap 
Faults 

Page I FS Net I/0 Total Net I/0 I 
Uti! Time Total Swap Outs I Read Write Total I Read Write Total 

II 
23.02 

I 
800 

I 
1931 

I 
670 1766 

I 
33936 9810 43747 52424 27498 7Y922 

nocc 1.10 1.02 0.90 0.55 0.75 2.22 1.03 1.76 1.50 0.87 1.20 

I 
21.18 768 1485 623 

I 
1620 30241 9508 

I 
39750 44819 25692 70512 

0.5M 1.02 0.98 0.69 0.51 0.69 1.98 1.00 1.60 1.29 0.81 1.06 

I 
21.47 I 783 1592 

I 
767 I 1872 

I 
29336 9485 

I 
38822 44810 27819 72630 

1M 1.03 I 1.00 0.74 0.63 I 0.80 1.92 1.00 1.57 1.29 0.88 1.09 

2t-.1 
22.94 

I 
878 2975 184-+ I 2640 

I 
28840 

I 
9485 

I 
38326 55914 34651 

I 
90566 

1.10 1.12 1.39 1.52 I 1.12 1.88 1.00 1.55 1.60 1.10 1.36 

II 
38.41 I 2217 

I 
63571 I 59273 I 6674 

I 
22599 9486 

I 
32085 554644 

I 
82920 637564 

3M U\4 I 2.R2 29.68 I 4R.82 I 2.R4 1.4R 1.00 1.29 15.91 2.62 9.59 

I 
20.86 

I 
787 

I 
2142 1214 2351 15306 

I 
9482 

I 
24789 34864 31592 

I 
66456 

I norm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

60 I 
20.11 763 1813 901 

I 
1842 16826 9484 26311 33623 27255 60879 

0.96 0.97 0.85 0.74 0.78 1.10 1.00 1.06 0.96 0.86 0.92 

120 20.10 
I 

751 1523 704 1619 23177 9484 32661 37788 25521 63310 
0.96 0.95 0.71 0.58 0.69 1.51 1.00 1.32 1.08 0.81 0.95 

240 20.04 754 1490 676 1622 25194 9485 34679 39604 25577 
I 

65181 
0.96 0.96 0.70 0.56 0.69 1.65 1.00 1.40 1.14 0.81 0.98 

480 20.74 756 1463 627 1849 26156 9481 35638 40430 
I 

27506 67936 
0.99 0.96 0.68 0.52 0.79 1.71 1.00 1.44 1.16 0.87 1.02 

960 
21.2.5 

I 
780 I 1658 84':1 

I 
2024 28242 9482 37724 44261 

I 
29089 73351 

1.02 0.99 0.77 0.70 0.86 1.85 1.00 1.52 1.27 0.92 1.10 

Table C-5. 12 Mbytes of memory on Client. 

Standard Deviations: 12 Me11aBvtes of Memorv on the Client 

Server Elap I Faults I Page I FS Net I/0 I Total Net I/0 

Ut;l Time I Total I Swap I Oms I Read Write I Total I Read I Write I Total 

I nocc )I 0.2 I 9.9 I 26 24 I 42 I 4.6 0.0 I 4.6 I 207 I 354 I 222 
! 0.5M )I 0.5 13 I 26 45 ! 126 I 21 2.3 I 24 I 190 I 1066 I 878 
I 1M 0.4 I 3.6 I 43 31 I 25 28 0.0 I 28 I 339 I 213 I 421 
I 2\1 0.1 6.4 I 48 43 I 53 34 I 0.0 I 34 i 401 i 480 I 778 I 

I 3'v1 (1 ~ I 159 ' 7489 I 6900 I 521 "~ 0.6 I 83 : 62404 6107 I 68449 
' 

1 no~. (1, () 27 I 140 ! 126 I 55 620 I ") ~ 
~ . .) I 623 1; 51 4()7 I 1180 

I 61) (12 I 13 I 1i I 14 I ~2 ' 567 i ') ~ -·" ' 569 : 719 323 I 411 
I 120 0.1 I 4.0 I 9.3 ! 2.0 I 57 I 247 2.3 I 249 I 198 497 I 503 I I 

! 240 II 0.3 I 9.8 ! 30 I 33 I 88 I 480 0.6 ! 480 I 492 i 746 I 1230 
480 II 0.5 I -,~ 12 I 40 ! 158 ' 1302 I 0.0 I 1302 I 1295 I 1324 I 289 _.) 

' 

I 960 1: 0.2 I 4.2 i 41 i 36 ! 73 I 308 I ,., ~ 
I 310 I 6'"' I 618 I 1216 ~ . .) ~-

Table C-6. Standard deviations with 12 Mbytes of memory on Client. 
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14 Mei!aBvtes of Memorv on the Client 
I 

I Server 

I 

Faults Page 
FS Net VO I Total Net I/0 

I 
Elap 

I Uti! Time Total i Swap Outs Read I Write Total Read \Vrite I Total 

I 
20.94 

I 
782 

I 
1684 

I 
440 

I 
1189 

I 
33942 YHJO 

I 
43752 50298 22560 72858 

nocc 1.10 1.13 1.05 0.62 0.72 4.52 1.04 2.58 2.27 0.89 1.53 

.I 
19.80 714 1090 I 317 1160 3027'J 

I 
9508 

I 
39787 41509 21706 63216 

0.5M 1.04 1.03 0.68 I 0.45 0.70 4.03 1.00 2.34 1.87 0.86 1.33 

1M II 
19.28 

I 
740 1309 475 1084 29368 

I 
9485 38854 42379 21087 63467 

1.02 107 0.82 0.67 0.66 3.91 I 1.00 2.29 1.91 0.83 1.34 

2~1 
20.30 747 1411 586 

I 
1523 28908 9485 38394 42805 24796 67602 

1.07 1.08 0.88 0.83 0.92 3.85 1.00 2.26 1.93 0.98 1.42 

3M 
20.86 763 1690 870 2008 23471 

I 
9485 

I 
32957 39536 28862 6~399 

1.10 1.10 1.05 1.23 1.22 3.13 1.00 1.94 1.78 1.14 1.44 

4M 21.88 846 2810 1736 2674 19751 
I 

9485 29236 45093 
I 

34735 79829 
1.15 1.22 1.75 2.45 162 2.63 1.00 1.72 2.03 1.37 :.68 

5M I 
36.79 1953 53122 49494 6211 15252 9485 24738 459903 76288 536191 
1.94 2.82 33.08 69.81 3.76 2.03 1.00 1.46 20.74 3.01 11.29 

18.99 692 
I 

1606 
I 

709 1653 7508 
I 

9469 
I 

16978 22171 25317 47489 
norm 

100 100 1.00 1.00 1.00 100 1.00 1.00 100 1.00 1.00 

I 
18.58 

I 
671 1355 

I 
555 1..,...,.., 12478 

I 
9484 

I 
21963 

I 
25196 21761 46957 

60 '-'-'-

0.98 0.97 0.84 0.78 0.74 1.66 1.00 1.29 1.14 0.86 0.99 

120 I 
18.26 

I 
678 1280 503 119~ 14112 9484 23596 26265 21561 47826 

0.96 0.98 0.80 0.71 0.72 1.88 1.00 1.39 1.18 0.85 1.01 

240 I 
18.47 689 1288 509 1128 19127 9483 28610 31542 21149 52691 
0.97 1.00 0.80 0.72 0.68 2.55 1.00 1.69 1.42 0.84 1.11 

480 
I 

18.47 691 1268 479 
I 

1095 19102 9485 
I 

28588 31342 20874 52216 
0.97 1.00 0.79 0.68 0.66 2.54 1.00 1.68 1.41 0.82 1.10 

960 
18.19 714 1291 

I 
491 

I 
1266 18912 9482 

I 
28394 31364 22315 

I 
53679 

0.96 1.03 0.80 0.69 0.77 2.52 1.00 I 1.67 1.41 0.88 1.13 

Table C-7. 14 Mbytes of memory on Client. 

Standard Deviations: 14 Mei!aBvtes of ~vlemorv on the Client 

II Scnoer Elap I Faults I Page I FS Net I/0 I TotalNetl/0 
I 

Uti! Time I Tot:J.l i Swap I Out> I Read I Write I Total I Read I Write I Total 
nocc I! 0.0 I 1.2 1 

~.., :,_ ! 24 1 53 I 0.0 0.0 I 0.0 251 456 I 204 
0.5~1 II 0.4 2.3 I 16 I 16 I 101 I 16 I ') ~ _,:, I 17 : 142 i 859 999 
1~1 II 0.3 I 15 I 9.5 I 20 I 2S ! 0.0 0.0 i 0.0 : 78 ..,..,, 

I 154 I I --~ 

I 2M I' 0.1 I 5.5 I 31 I 27 I 130 i 6.1 0.0 I 6.1 I 2SD ' 1130 I :388 ,I I 

-3M II 0.4 11 70 68 ! 136 26 0.0 I 26 1ns I 
4M It 0.4 13 172 136 ! 50 64 0.6 64 1-n5 490 I 

5M 1 1.6 27.! i 12915 I 11907 R61 209 0.6 209 107462 10312 
I norm II 01 .... -- -- 4~7 .. 4~1 '. ' - ,, ~ 

60 I; 0.2 I 9.6 ! 47 I 28 I 22 I 714 2.3 714 I 9'"' ... _ 
1 1~9 I 1008 

120 I' 0.1 I ]4 i 75 I 78 I 4.4 I 594 2.3 I 595 I 847 I 63 I 913 
240 li 0.5 i 5.0 37 I 21 I 110 I JS65 2.1 I 1866 I 1667 9~.., 

':i- ! 2657 I 

I 480 i' 0.5 i 1.5 I 38 I 29 I 7S I 541 0.0 I 541 I 520 S62 I 908 I 

960 li 0.5 23 14 -17 1 17) I 590 I 2.3 -::l88 I 711 
. 

1485 I 1566 I 

Table C-8. Standard deviations with 14 :.1bytes of memory on Client. 
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16 Me£:J.Bvtcs of Memorv on the Client 

I 
I 

Server E1ap 
Faults I Page 

FS l'iet 1/0 Total t'et I/0 

I 
Uti! Time Total Swan Outs Read I Write Total Read Write Total I 

II 
19.82 721 1253 15b 

I 
431 33938 9810 

I 
43748 46596 16029 62625 

nocc 1.09 1.09 0.80 0.24 0.46 4.75 1.04 2.63 2.19 I 0.84 1.55 
' 17.40 667 699 33 88 30308 9506 39814 38135 12525 50660 

0.5M i 
0.96 1.01 0.45 0.05 0.10 4.24 1.00 2.40 1.79 0.66 1.25 

1M I 
18.49 690 904 195 649 29423 9485 38909 38991 17278 56270 
1.02 1.04 0.58 0.29 0.70 4.11 1.00 2.34 1.83 0.90 1.39 

I 2M 
20.06 

I 
691 1021 289 1011 28926 9484 38411 

I 
39497 20368 59865 

1.10 1.04 0.65 0.43 1.09 4.04 1.00 2.31 1.85 1.07 1.48 I 

3M I 
19.57 

I 
729 1277 

I 
459 1247 23469 9485 32955 

I 
35993 

I 
22289 58283 i 

1.08 1.10 0.82 0.68 1.34 3.28 1.00 1.98 1.69 1.17 1.44 

4M I 
20.22 

I 
736 1445 634 

I 
1662 19818 9484 

I 
29302 

I 
33647 25736 

I 
59384 i 

1.11 1.11 0.93 0.94 1.79 2.77 1.00 1.76 1.58 1.35 1.47 I 

5M 
I 

21.33 753 1707 
I 

868 2239 15924 
I 

9485 
I 

25410 31857 30589 62446 
1.17 1.14 1.09 1.29 2.41 2.23 1.00 1.53 1.49 1.60 1.54 

6~1 
22.27 870 

I 
2848 

I 
1724 

I 
2939 13099 9485 

I 
22585 38521 36759 75280 

1.22 1.31 1.83 2.56 3.16 1.83 l.OO 1.36 1.81 1.92 1.86 

I 7M II 
38.73 

I 
2491 

I 
76889 

I 
72290 

I 
6968 8591 

I 
9485 

I 
18077 651019 88140 

I 
739160 

2.13 3.76 49.29 107.42 7.50 1.20 1.00 1.09 30.53 4.61 18.28 

I norm II 
18.20 

I 
663 

I 
1560 

I 
673 929 7152 9460 16613 

I 
21324 

I 
19110 

i 
40435 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

I 
60 II 

17.34 
I 

651 
I 

1151 
I 

432 
I 

697 
I 

9155 
I 

9485 
I 

18641 19965 17157 
I 

37122 
0.95 0.98 0.74 0.64 0.75 1.28 1.00 1.12 0.94 0.90 0.92 

120 I 
18.25 

I 
653 

I 
1190 

I 
455 

I 
913 11781 9485 

I 
21267 23056 

I 
19087 

I 
42144 

1.00 0.99 0.76 0.68 0.98 1.65 1.00 1.28 1.08 1.00 1.04 

II 
16.95 

I 
660 

I 
993 

I 
307 I 342 14352 

I 
9485 23838 

I 
24013 

I 
14269 1 38282 

240 I 

0.93 1.00 0.64 0.46 I 0.37 2.01 1.00 1.43 1.13 0.75 I 0.95 
I 16.27 

I 
651 

I 
979 

I 
291 

I 
405 14253 9485 23739 23799 14798 

I 
38597 

480 I 0.89 0.98 0.63 0.43 0.44 1.99 1.00 1.43 1.12 0.77 0.95 

960 I 16.50 
I 

652 
I 

987 298 607 
I 

14283 
I 

9485 
I 

23769 23923 
I 

16500 
I 
4~24 

I 0.91 0.98 0.63 0.44 0.65 2.00 1.00 1.43 1.12 I 0.86 1.00 

Table C-9. 16 Mbytcs of memory on Client. 
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Standard Deviations: 16 MegaBvtes of Memorv on the Client 

I 

Server 

I 

Elap I 
Faults 

! Page 
FS ~ct UO Total Net I!O ! 

Util Ti'Tie I Total I Swap I Outs Read I Write Total Read Write Total I 
nocc I 0.0 0.6 6.9 I 0.6 I 160 4.6 0.0 4.6 42 1348 1306 

0.5M II 0.7 4.4 24 12 55 32 2.3 34 215 471 276 

1M II 1.1 6.4 3.6 35 430 4.6 0.0 4.6 78 3649 3724 

2M II 0.4 1.5 25 27 41 61 1.7 63 263 ! 335 178 

3M I 0.3 21 12 9.1 210 24 0.6 24 130 1785 1838 

4M II 0.2 18 35 38 58 51 2.3 54 313 I 478 183 

51\1 I 0.4 14 I 64 16 I 219 10 0.0 10 I 509 I 1783 :428 

6\1 II 0.5 13 441 341 108 I 69 I 0.0 I 69 I 3596 I 976 3727 

7.\1 i ~ 1.6 410 ! 18882 I 17673 I 1061 I 380 i 0.0 I 380 1:'7007 13399 17Cn66 I 

norm I• 09 5.2 I 21 5.5 2li9 I 18 I 2.3 ! Hi 125 I 2538 I 2472 

60 pen II 0.4 1.5 I 8.1 I 5.5 I 214 I 215 0.0 I 215 181 1791 1970 

120 pen I 0.9 9.3 I 51 I 40 I 287 I 456 I 0.0 I 456 663 2465 I 2874 

240 pen li 0.5 3.8 I 18 I 23 I 141 I 140 0.0 140 152 1204 1116 I 

480 p_cn ,, 0.5 3.1 I 21 20 123 I 415 I 0.0 I 415 I 506 I 1020 591 
' I 

960 2en li 0.6 I 4.0 i 11 20 I 306 I 197 I 0.0 197 203 I 2605 I 2785 I I 

Table C-10. Standard deviations with 16 Mbytes of memory on Client. 


